Displaying 41 – 60 of 96

Showing per page

Metastability in the Furstenberg-Zimmer tower

Jeremy Avigad, Henry Towsner (2010)

Fundamenta Mathematicae

According to the Furstenberg-Zimmer structure theorem, every measure-preserving system has a maximal distal factor, and is weak mixing relative to that factor. Furstenberg and Katznelson used this structural analysis of measure-preserving systems to provide a perspicuous proof of Szemerédi’s theorem. Beleznay and Foreman showed that, in general, the transfinite construction of the maximal distal factor of a separable measure-preserving system can extend arbitrarily far into the countable ordinals....

Metric spaces admitting only trivial weak contractions

Richárd Balka (2013)

Fundamenta Mathematicae

If (X,d) is a metric space then a map f: X → X is defined to be a weak contraction if d(f(x),f(y)) < d(x,y) for all x,y ∈ X, x ≠ y. We determine the simplest non-closed sets X ⊆ ℝⁿ in the sense of descriptive set-theoretic complexity such that every weak contraction f: X → X is constant. In order to do so, we prove that there exists a non-closed F σ set F ⊆ ℝ such that every weak contraction f: F → F is constant. Similarly, there exists a non-closed G δ set G ⊆ ℝ such that every weak contraction...

Metric spaces with point character equal to their size

C. Avart, P. Komjath, Vojtěch Rödl (2010)

Commentationes Mathematicae Universitatis Carolinae

In this paper we consider the point character of metric spaces. This parameter which is a uniform version of dimension, was introduced in the context of uniform spaces in the late seventies by Jan Pelant, Cardinal reflections and point-character of uniformities, Seminar Uniform Spaces (Prague, 1973–1974), Math. Inst. Czech. Acad. Sci., Prague, 1975, pp. 149–158. Here we prove for each cardinal κ , the existence of a metric space of cardinality and point character κ . Since the point character can...

Minimal monads

Karel Čuda, Blanka Vojtášková (1987)

Commentationes Mathematicae Universitatis Carolinae

Minimal predictors in hat problems

Christopher S. Hardin, Alan D. Taylor (2010)

Fundamenta Mathematicae

We consider a combinatorial problem related to guessing the values of a function at various points based on its values at certain other points, often presented by way of a hat-problem metaphor: there are a number of players who will have colored hats placed on their heads, and they wish to guess the colors of their own hats. A visibility relation specifies who can see which hats. This paper focuses on the existence of minimal predictors: strategies guaranteeing at least one player guesses correctly,...

Minimality of non-σ-scattered orders

Tetsuya Ishiu, Justin Tatch Moore (2009)

Fundamenta Mathematicae

We will characterize-under appropriate axiomatic assumptions-when a linear order is minimal with respect to not being a countable union of scattered suborders. We show that, assuming PFA⁺, the only linear orders which are minimal with respect to not being σ-scattered are either Countryman types or real types. We also outline a plausible approach to demonstrating the relative consistency of: There are no minimal non-σ-scattered linear orders. In the process of establishing these results, we will...

Currently displaying 41 – 60 of 96