Displaying 701 – 720 of 2138

Showing per page

Forcing countable networks for spaces satisfying R ( X ω ) = ω

István Juhász, Lajos Soukup, Zoltán Szentmiklóssy (1996)

Commentationes Mathematicae Universitatis Carolinae

We show that all finite powers of a Hausdorff space X do not contain uncountable weakly separated subspaces iff there is a c.c.c poset P such that in V P X is a countable union of 0 -dimensional subspaces of countable weight. We also show that this...

Forcing for hL and hd

Andrzej Rosłanowski, Saharon Shelah (2001)

Colloquium Mathematicae

The present paper addresses the problem of attainment of the supremums in various equivalent definitions of the hereditary density hd and hereditary Lindelöf degree hL of Boolean algebras. We partially answer two problems of J. Donald Monk [13, Problems 50, 54], showing consistency of different attainment behaviour and proving that (for the variants considered) this is the best result we can expect.

Forcing in the alternative set theory. I

Jiří Sgall (1991)

Commentationes Mathematicae Universitatis Carolinae

The technique of forcing is developed for the alternative set theory (AST) and similar weak theories, where it can be used to prove some new independence results. There are also introduced some new extensions of AST.

Forcing in the alternative set theory. II

Jiří Sgall, Antonín Sochor (1991)

Commentationes Mathematicae Universitatis Carolinae

By the technique of forcing, some new independence results are proved for the alternative set theory (AST) and similar weak theories: The scheme of choice is independent both of AST and of second order arithmetic, axiom of constructibility is independent of AST plus schemes of choice.

Forcing tightness in products of fans

Jörg Brendle, Tim La Berge (1996)

Fundamenta Mathematicae

We prove two theorems that characterize tightness in certain products of fans in terms of families of integer-valued functions. We also define several notions of forcing that allow us to manipulate the structure of the set of functions from some cardinal θ to ω, and hence, the tightness of these products. These results give new constructions of first countable <θ-cwH spaces that are not ≤θ-cwH.

Forcing with ideals generated by closed sets

Jindřich Zapletal (2002)

Commentationes Mathematicae Universitatis Carolinae

Consider the poset P I = Borel ( ) I where I is an arbitrary σ -ideal σ -generated by a projective collection of closed sets. Then the P I extension is given by a single real r of an almost minimal degree: every real s V [ r ] is Cohen-generic over V or V [ s ] = V [ r ] .

Fragments of strong compactness, families of partitions and ideal extensions

Laura Fontanella, Pierre Matet (2016)

Fundamenta Mathematicae

We investigate some natural combinatorial principles related to the notion of mild ineffability, and use them to obtain new characterizations of mild ineffable and weakly compact cardinals. We also show that one of these principles may be satisfied by a successor cardinal. Finally, we establish a version for κ ( λ ) of the canonical Ramsey theorem for pairs.

Fraïssé structures and a conjecture of Furstenberg

Dana Bartošová, Andy Zucker (2019)

Commentationes Mathematicae Universitatis Carolinae

We study problems concerning the Samuel compactification of the automorphism group of a countable first-order structure. A key motivating question is a problem of Furstenberg and a counter-conjecture by Pestov regarding the difference between S ( G ) , the Samuel compactification, and E ( M ( G ) ) , the enveloping semigroup of the universal minimal flow. We resolve Furstenberg’s problem for several automorphism groups and give a detailed study in the case of G = S , leading us to define and investigate several new types...

Currently displaying 701 – 720 of 2138