Remarks on Pκλ-combinatorics
In ZF, i.e., the Zermelo-Fraenkel set theory minus the Axiom of Choice AC, we investigate the relationship between the Tychonoff product , where 2 is 2 = 0,1 with the discrete topology, and the Stone space S(X) of the Boolean algebra of all subsets of X, where X = ω,ℝ. We also study the possible placement of well-known topological statements which concern the cited spaces in the hierarchy of weak choice principles.
Homogeneity, as one type of invariantness, means that an aggregation function is invariant with respect to multiplication by a constant, and quasi-homogeneity, as a relaxed version, reflects the original output as well as the constant. In this paper, we characterize all homogeneous/quasi-homogeneous -ary aggregation functions and present several methods to generate new homogeneous/quasi-homogeneous -ary aggregation functions by aggregation of given ones.
In this paper, we present the representation for uni-nullnorms with disjunctive underlying uninorms on bounded lattices. It is shown that our method can cover the representation of nullnorms on bounded lattices and some of existing construction methods for uni-nullnorms on bounded lattices. Illustrative examples are presented simultaneously. In addition, the representation of null-uninorms with conjunctive underlying uninorms on bounded lattices is obtained dually.
Structures of automorphisms and automorphism groups in fuzzy set theory are studied in detail in view of applications to synonymy and antonymy representations.
Suppose B is a unital algebra which is an algebraic product of full matrix algebras over an index set X. A bijection is set up between the equivalence classes of irreducible representations of B as operators on a Banach space and the σ-complete ultrafilters on X (Theorem 2.6). Therefore, if X has less than measurable cardinality (e.g. accessible), the equivalence classes of the irreducible representations of B are labeled by points of X, and all representations of B are described (Theorem 3.3).
Every crowded space is -resolvable in the c.c.c. generic extension of the ground model. We investigate what we can say about -resolvability in c.c.c. generic extensions for . A topological space is monotonically -resolvable if there is a function such that for each . We show that given a space the following statements are equivalent: (1) is -resolvable in some c.c.c. generic extension; (2) is monotonically -resolvable; (3) is -resolvable in the Cohen-generic extension ....
We study automorphisms in the alternative set theory. We prove that fully revealed automorphisms are not closed under composition. We also construct some special automorphisms. We generalize the notion of revealment and Sd-class.