Previous Page 5

Displaying 81 – 92 of 92

Showing per page

Riga p -point

Jaroslav Nešetřil (1977)

Commentationes Mathematicae Universitatis Carolinae

Risk aversion, prudence and mixed optimal saving models

Irina Georgescu (2014)

Kybernetika

The paper studies risk aversion and prudence of an agent in the face of a risk situation with two parameters, one described by a fuzzy number, the other described by a fuzzy variable. The first contribution of the paper is the characterization of risk aversion and prudence in mixed models by conditions on the concavity and the convexity of the agent's utility function and its partial derivatives. The second contribution is the building of mixed models of optimal saving and their connection with...

Rothberger gaps in fragmented ideals

Jörg Brendle, Diego Alejandro Mejía (2014)

Fundamenta Mathematicae

The Rothberger number (ℐ) of a definable ideal ℐ on ω is the least cardinal κ such that there exists a Rothberger gap of type (ω,κ) in the quotient algebra (ω)/ℐ. We investigate (ℐ) for a class of F σ ideals, the fragmented ideals, and prove that for some of these ideals, like the linear growth ideal, the Rothberger number is ℵ₁, while for others, like the polynomial growth ideal, it is above the additivity of measure. We also show that it is consistent that there are infinitely many (even continuum...

Rough relation properties

Maria Nicoletti, Joaquim Uchoa, Margarete Baptistini (2001)

International Journal of Applied Mathematics and Computer Science

Rough Set Theory (RST) is a mathematical formalism for representing uncertainty that can be considered an extension of the classical set theory. It has been used in many different research areas, including those related to inductive machine learning and reduction of knowledge in knowledge-based systems. One important concept related to RST is that of a rough relation. This paper rewrites some properties of rough relations found in the literature, proving their validity.

Roughness in G -graphs

Bibi N. Onagh (2020)

Commentationes Mathematicae Universitatis Carolinae

G -graphs are a type of graphs associated to groups, which were proposed by A. Bretto and A. Faisant (2005). In this paper, we first give some theorems regarding G -graphs. Then we introduce the notion of rough G -graphs and investigate some important properties of these graphs.

Rudin-like sets and hereditary families of compact sets

Étienne Matheron, Miroslav Zelený (2005)

Fundamenta Mathematicae

We show that a comeager Π₁¹ hereditary family of compact sets must have a dense G δ subfamily which is also hereditary. Using this, we prove an “abstract” result which implies the existence of independent ℳ ₀-sets, the meagerness of ₀-sets with the property of Baire, and generalizations of some classical results of Mycielski. Finally, we also give some natural examples of true F σ δ sets.

Rudin's Dowker space in the extension with a Suslin tree

Teruyuki Yorioka (2008)

Fundamenta Mathematicae

We introduce a generalization of a Dowker space constructed from a Suslin tree by Mary Ellen Rudin, and the rectangle refining property for forcing notions, which modifies the one for partitions due to Paul B. Larson and Stevo Todorčević and is stronger than the countable chain condition. It is proved that Martin's Axiom for forcing notions with the rectangle refining property implies that every generalized Rudin space constructed from Aronszajn trees is non-Dowker, and that the same can be forced...

Currently displaying 81 – 92 of 92

Previous Page 5