Displaying 881 – 900 of 2135

Showing per page

Involutions in fuzzy set theory.

Sergei V. Ovchinnikov (1980)

Stochastica

All possible involutions in fuzzy set theory are completely described. Any involution is a composition of a symmetry on a universe of fuzzy sets and an involution on a truth set.

Is the product of ccc spaces a ccc space?

Nina M. Roy (1989)

Publicacions Matemàtiques

In this expository paper it is shown that Martin's Axiom and the negation of the Continuum Hypothesis imply that the product of ccc spaces is a ccc space. The Continuum Hypothesis is then used to construct the Laver-Gavin example of two ccc spaces whose product is not a ccc space.

Iterating along a Prikry sequence

Spencer Unger (2016)

Fundamenta Mathematicae

We introduce a new method which combines Prikry forcing with an iteration between the Prikry points. Using our method we prove from large cardinals that it is consistent that the tree property holds at ℵₙ for n ≥ 2, ω is strong limit and 2 ω = ω + 2 .

Juegos no cooperativos con preferencias difusas.

Juan Tejada Cazorla (1988)

Trabajos de Investigación Operativa

El objetivo de este trabajo es el estudio de los juegos no cooperativos en los que los jugadores expresan sus preferencias sobre las consecuencias que se derivan de sus acciones mediante relaciones binarias difusas. El concepto de solución que se maneja es el de estrategias en equilibrio. La existencia de tales estrategias queda probada en el caso de que los jugadores definan sus preferencias sobre las consecuencias aleatorias mediante la extensión lineal introducida en Montero-Tejada (1986a).

Kappa-Slender Modules

Radoslav Dimitric (2020)

Communications in Mathematics

For an arbitrary infinite cardinal κ , we define classes of κ -cslender and κ -tslender modules as well as related classes of κ -hmodules and initiate a study of these classes.

Keeping the covering number of the null ideal small

Teruyuki Yorioka (2015)

Fundamenta Mathematicae

It is proved that ideal-based forcings with the side condition method of Todorcevic (1984) add no random reals. By applying Judah-Repický's preservation theorem, it is consistent with the covering number of the null ideal being ℵ₁ that there are no S-spaces, every poset of uniform density ℵ₁ adds ℵ₁ Cohen reals, there are only five cofinal types of directed posets of size ℵ₁, and so on. This extends the previous work of Zapletal (2004).

Currently displaying 881 – 900 of 2135