Displaying 1041 – 1060 of 2138

Showing per page

More Easton theorems for level by level equivalence

Arthur W. Apter (2012)

Colloquium Mathematicae

We establish two new Easton theorems for the least supercompact cardinal that are consistent with the level by level equivalence between strong compactness and supercompactness. These theorems generalize Theorem 1 in our earlier paper [Math. Logic Quart. 51 (2005)]. In both our ground model and the model witnessing the conclusions of our present theorems, there are no restrictions on the structure of the class of supercompact cardinals.

More on cardinal invariants of analytic P -ideals

Barnabás Farkas, Lajos Soukup (2009)

Commentationes Mathematicae Universitatis Carolinae

Given an ideal on ω let 𝔞 ( ) ( 𝔞 ¯ ( ) ) be minimum of the cardinalities of infinite (uncountable) maximal -almost disjoint subsets of [ ω ] ω . We show that 𝔞 ( h ) > ω if h is a summable ideal; but 𝔞 ( 𝒵 μ ) = ω for any tall density ideal 𝒵 μ including the density zero ideal 𝒵 . On the other hand, you have 𝔟 𝔞 ¯ ( ) for any analytic P -ideal , and 𝔞 ¯ ( 𝒵 μ ) 𝔞 for each density ideal 𝒵 μ . For each ideal on ω denote 𝔟 and 𝔡 the unbounding and dominating numbers of ω ω , where f g iff { n ω : f ( n ) > g ( n ) } . We show that 𝔟 = 𝔟 and 𝔡 = 𝔡 for each analytic P -ideal . Given a Borel ideal on...

More on the Ehrenfeucht-Fraisse game of length ω₁

Tapani Hyttinen, Saharon Shelah, Jouko Vaananen (2002)

Fundamenta Mathematicae

By results of [9] there are models and for which the Ehrenfeucht-Fraïssé game of length ω₁, E F G ω ( , ) , is non-determined, but it is consistent relative to the consistency of a measurable cardinal that no such models have cardinality ≤ ℵ₂. We now improve the work of [9] in two ways. Firstly, we prove that the consistency strength of the statement “CH and E F G ω ( , ) is determined for all models and of cardinality ℵ₂” is that of a weakly compact cardinal. On the other hand, we show that if 2 < 2 , T is a countable complete...

More on tie-points and homeomorphism in ℕ*

Alan Dow, Saharon Shelah (2009)

Fundamenta Mathematicae

A point x is a (bow) tie-point of a space X if X∖x can be partitioned into (relatively) clopen sets each with x in its closure. We denote this as X = A x B where A, B are the closed sets which have a unique common accumulation point x. Tie-points have appeared in the construction of non-trivial autohomeomorphisms of βℕ = ℕ* (by Veličković and Shelah Steprans) and in the recent study (by Levy and Dow Techanie) of precisely 2-to-1 maps on ℕ*. In these cases the tie-points have been the unique fixed point...

More remarks on the intersection ideal 𝒩

Tomasz Weiss (2018)

Commentationes Mathematicae Universitatis Carolinae

We prove in ZFC that every 𝒩 additive set is 𝒩 additive, thus we solve Problem 20 from paper [Weiss T., A note on the intersection ideal 𝒩 , Comment. Math. Univ. Carolin. 54 (2013), no. 3, 437-445] in the negative.

More results in polychromatic Ramsey theory

Uri Abraham, James Cummings (2012)

Open Mathematics

We study polychromatic Ramsey theory with a focus on colourings of [ω 2]2. We show that in the absence of GCH there is a wide range of possibilities. In particular each of the following is consistent relative to the consistency of ZFC: (1) 2ω = ω 2 and ω 2 p o l y ( α ) 0 - b d d 2 for every α <ω 2; (2) 2ω = ω 2 and ω 2 p o l y ( ω 1 ) 2 - b d d 2 .

More set-theory around the weak Freese–Nation property

Sakaé Fuchino, Lajos Soukup (1997)

Fundamenta Mathematicae

We introduce a very weak version of the square principle which may hold even under failure of the generalized continuum hypothesis. Under this weak square principle, we give a new characterization (Theorem 10) of partial orderings with κ-Freese-Nation property (see below for the definition). The characterization is not a ZFC theorem: assuming Chang’s Conjecture for ω , we can find a counter-example to the characterization (Theorem 12). We then show that, in the model obtained by adding Cohen reals,...

Multiple gaps

Antonio Avilés, Stevo Todorcevic (2011)

Fundamenta Mathematicae

We study a higher-dimensional version of the standard notion of a gap formed by a finite sequence of ideals of the quotient algebra 𝓟(ω)/fin. We examine different types of such objects found in 𝓟(ω)/fin both from the combinatorial and the descriptive set-theoretic side.

Multiplication of nonadditive cuts in AST

Karel Čuda (1991)

Commentationes Mathematicae Universitatis Carolinae

Three complete characteristics of couples of nonadditive cuts such that J × K ̲ J t i m e s K ¯ are given. The equality J × K ¯ = J ! K is proved for all couples of nonadditive cuts. Some examples of nonadditive cuts are described.

Currently displaying 1041 – 1060 of 2138