Displaying 141 – 160 of 192

Showing per page

Construction of uninorms on bounded lattices

Gül Deniz Çaylı, Funda Karaçal (2017)

Kybernetika

In this paper, we propose the general methods, yielding uninorms on the bounded lattice ( L , , 0 , 1 ) , with some additional constraints on e L { 0 , 1 } for a fixed neutral element e L { 0 , 1 } based on underlying an arbitrary triangular norm T e on [ 0 , e ] and an arbitrary triangular conorm S e on [ e , 1 ] . And, some illustrative examples are added for clarity.

Constructions of thin-tall Boolean spaces.

Juan Carlos Martínez (2003)

Revista Matemática Complutense

This is an expository paper about constructions of locally compact, Hausdorff, scattered spaces whose Cantor-Bendixson height has cardinality greater than their Cantor-Bendixson width.

Continuous tree-like scales

James Cummings (2010)

Open Mathematics

Answering a question raised by Luis Pereira, we show that a continuous tree-like scale can exist above a supercompact cardinal. We also show that the existence of a continuous tree-like scale at ℵω is consistent with Martin’s Maximum.

Contra G δ -continuity in smooth fuzzy topological spaces

D. Anitha Devi, Elango Roja, Mallasamudram Kuppusamy Uma (2009)

Mathematica Bohemica

In this paper the concept of fuzzy contra δ -continuity in the sense of A. P. Sostak (1985) is introduced. Some interesting properties and characterizations are investigated. Also, some applications to fuzzy compact spaces are established.

Convex Corson compacta and Radon measures

Grzegorz Plebanek (2002)

Fundamenta Mathematicae

Assuming the continuum hypothesis, we show that (i) there is a compact convex subset L of Σ ( ω ) , and a probability Radon measure on L which has no separable support; (ii) there is a Corson compact space K, and a convex weak*-compact set M of Radon probability measures on K which has no G δ -points.

Convex ( L , M ) -fuzzy remote neighborhood operators

Hu Zhao, Li-Yan Jia, Gui-Xiu Chen (2024)

Kybernetika

In this paper, two kinds of remote neighborhood operators in ( L , M ) -fuzzy convex spaces are proposed, which are called convex ( L , M ) -fuzzy remote neighborhood operators. It is proved that these two kinds of convex ( L , M ) -fuzzy remote neighborhood operators can be used to characterize ( L , M ) -fuzzy convex structures. In addition, the lattice structures of two kinds of convex ( L , M ) -fuzzy remote neighborhood operators are also given.

Convexity ranks in higher dimensions

Menachem Kojman (2000)

Fundamenta Mathematicae

A subset of a vector space is called countably convex if it is a countable union of convex sets. Classification of countably convex subsets of topological vector spaces is addressed in this paper. An ordinal-valued rank function ϱ is introduced to measure the complexity of local nonconvexity points in subsets of topological vector spaces. Then ϱ is used to give a necessary and sufficient condition for countable convexity of closed sets. Theorem. Suppose that S is a closed subset of a Polish linear...

Coordinatewise decomposition, Borel cohomology, and invariant measures

Benjamin D. Miller (2006)

Fundamenta Mathematicae

Given Polish spaces X and Y and a Borel set S ⊆ X × Y with countable sections, we describe the circumstances under which a Borel function f: S → ℝ is of the form f(x,y) = u(x) + v(y), where u: X → ℝ and v: Y → ℝ are Borel. This turns out to be a special case of the problem of determining whether a real-valued Borel cocycle on a countable Borel equivalence relation is a coboundary. We use several Glimm-Effros style dichotomies to give a solution to this problem in terms of certain σ-finite measures...

Coordinatewise decomposition of group-valued Borel functions

Benjamin D. Miller (2007)

Fundamenta Mathematicae

Answering a question of Kłopotowski, Nadkarni, Sarbadhikari, and Srivastava, we characterize the Borel sets S ⊆ X × Y with the property that every Borel function f: S → ℂ is of the form f(x,y) = u(x) + v(y), where u: X → ℂ and v: Y → ℂ are Borel.

Currently displaying 141 – 160 of 192