Displaying 121 – 140 of 191

Showing per page

On pseudo BE-algebras

Rajab Ali Borzooei, Arsham Borumand Saeid, Akbar Rezaei, Akefe Radfar, Reza Ameri (2013)

Discussiones Mathematicae - General Algebra and Applications

In this paper, we introduce the notion of pseudo BE-algebra which is a generalization of BE-algebra. We define the concepts of pseudo subalgebras and pseudo filters and prove that, under some conditions, pseudo subalgebra can be a pseudo filter. We prove that every homomorphic image and pre-image of a pseudo filter is also a pseudo filter. Furthermore, the notion of pseudo upper sets in pseudo BE-algebras introduced and is proved that every pseudo filter is an union of pseudo upper sets.

On pseudo-BCI-algebras

Grzegorz Dymek (2015)

Annales UMCS, Mathematica

The notion of normal pseudo-BCI-algebras is studied and some characterizations of it are given. Extensions of pseudo-BCI-algebras are also considered.

On systems of congruences on principal filters of orthomodular implication algebras

Radomír Halaš, Luboš Plojhar (2007)

Mathematica Bohemica

Orthomodular implication algebras (with or without compatibility condition) are a natural generalization of Abbott’s implication algebras, an implication reduct of the classical propositional logic. In the paper deductive systems (= congruence kernels) of such algebras are described by means of their restrictions to principal filters having the structure of orthomodular lattices.

On the lattice of deductive systems of a BL-algebra

Dumitru Bu§neag, Dana Piciu (2003)

Open Mathematics

For a BL-algebra A we denote by Ds(A) the lattice of all deductive systems of A. The aim of this paper is to put in evidence new characterizations for the meet-irreducible elements on Ds(A). Hyperarchimedean BL-algebras, too, are characterized.

Pseudo B L -algebras and D R -monoids

Jan Kühr (2003)

Mathematica Bohemica

It is shown that pseudo B L -algebras are categorically equivalent to certain bounded D R -monoids. Using this result, we obtain some properties of pseudo B L -algebras, in particular, we can characterize congruence kernels by means of normal filters. Further, we deal with representable pseudo B L -algebras and, in conclusion, we prove that they form a variety.

Pseudo-MV algebra of fractions and maximal pseudo-MV algebra of quotients

Dana Piciu (2004)

Open Mathematics

The aim of this paper is to define the notions of pseudo-MV algebra of fractions and maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (taking as a guide-line the elegant construction of complete ring of quotients by partial morphisms introduced by G. Findlay and J. Lambek-see [14], p.36). For some informal explanations of the notion of fraction see [14], p. 37. In the last part of this paper the existence of the maximal pseudo-MV algebra of quotients for a pseudo-MV algebra (Theorem...

Pure filters and stable topology on BL-algebras

Esfandiar Eslami, Farhad Kh. Haghani (2009)

Kybernetika

In this paper we introduce stable topology and F -topology on the set of all prime filters of a BL-algebra A and show that the set of all prime filters of A , namely Spec( A ) with the stable topology is a compact space but not T 0 . Then by means of stable topology, we define and study pure filters of a BL-algebra A and obtain a one to one correspondence between pure filters of A and closed subsets of Max( A ), the set of all maximal filters of A , as a subspace of Spec( A ). We also show that for any filter...

Putting together Lukasiewicz and product logics.

Francesc Esteva, Lluis Godo (1999)

Mathware and Soft Computing

In this paper we investigate a propositional fuzzy logical system LΠ which contains the well-known Lukasiewicz, Product and Gödel fuzzy logics as sublogics. We define the corresponding algebraic structures, called LΠ-algebras and prove the following completeness result: a formula φ is provable in the LΠ logic iff it is a tautology for all linear LΠ-algebras. Moreover, linear LΠ-algebras are shown to be embeddable in linearly ordered abelian rings with a strong unit and cancellation law.

Quantum B-algebras

Wolfgang Rump (2013)

Open Mathematics

The concept of quantale was created in 1984 to develop a framework for non-commutative spaces and quantum mechanics with a view toward non-commutative logic. The logic of quantales and its algebraic semantics manifests itself in a class of partially ordered algebras with a pair of implicational operations recently introduced as quantum B-algebras. Implicational algebras like pseudo-effect algebras, generalized BL- or MV-algebras, partially ordered groups, pseudo-BCK algebras, residuated posets,...

Currently displaying 121 – 140 of 191