Displaying 21 – 40 of 48

Showing per page

The n m -propositional calculus

Carlos Gallardo, Alicia Ziliani (2015)

Mathematica Bohemica

T. Almada and J. Vaz de Carvalho (2001) stated the problem to investigate if these Łukasiewicz algebras are algebras of some logic system. In this article an affirmative answer is given and the n m -propositional calculus, denoted by n m , is introduced in terms of the binary connectives (implication), (standard implication), (conjunction), (disjunction) and the unary ones f (negation) and D i , 1 i n - 1 (generalized Moisil operators). It is proved that n m belongs to the class of standard systems of implicative...

The partially pre-ordered set of compactifications of Cp(X, Y)

A. Dorantes-Aldama, R. Rojas-Hernández, Á. Tamariz-Mascarúa (2015)

Topological Algebra and its Applications

In the set of compactifications of X we consider the partial pre-order defined by (W, h) ≤X (Z, g) if there is a continuous function f : Z ⇢ W, such that (f ∘ g)(x) = h(x) for every x ∈ X. Two elements (W, h) and (Z, g) of K(X) are equivalent, (W, h) ≡X (Z, g), if there is a homeomorphism h : W ! Z such that (f ∘ g)(x) = h(x) for every x ∈ X. We denote by K(X) the upper semilattice of classes of equivalence of compactifications of X defined by ≤X and ≡X. We analyze in this article K(Cp(X, Y)) where...

The prime and maximal spectra and the reticulation of BL-algebras

Laurenťiu Leuštean (2003)

Open Mathematics

In this paper we study the prime and maximal spectra of a BL-algebra, proving that the prime spectrum is a compact T 0 topological space and that the maximal spectrum is a compact Hausdorff topological space. We also define and study the reticulation of a BL-algebra.

The Role of Halaš Identity in Orthomodular Lattices

Ivan Chajda (2014)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

We prove that a certain identity introduced by R. Halaš for classifying basic algebras can be used for characterizing orthomodular lattices in the class of ortholattices with antitone involutions on every principal filter.

The Rothberger property on C p ( Ψ ( 𝒜 ) , 2 )

Daniel Bernal-Santos (2016)

Commentationes Mathematicae Universitatis Carolinae

A space X is said to have the Rothberger property (or simply X is Rothberger) if for every sequence 𝒰 n : n ω of open covers of X , there exists U n 𝒰 n for each n ω such that X = n ω U n . For any n ω , necessary and sufficient conditions are obtained for C p ( Ψ ( 𝒜 ) , 2 ) n to have the Rothberger property when 𝒜 is a Mrówka mad family and, assuming CH (the Continuum Hypothesis), we prove the existence of a maximal almost disjoint family 𝒜 for which the space C p ( Ψ ( 𝒜 ) , 2 ) n is Rothberger for all n ω .

Topological representation for monadic implication algebras

Abad Manuel, Cimadamore Cecilia, Díaz Varela José (2009)

Open Mathematics

In this paper, every monadic implication algebra is represented as a union of a unique family of monadic filters of a suitable monadic Boolean algebra. Inspired by this representation, we introduce the notion of a monadic implication space, we give a topological representation for monadic implication algebras and we prove a dual equivalence between the category of monadic implication algebras and the category of monadic implication spaces.

Currently displaying 21 – 40 of 48