The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Effect algebras were introduced as abstract models of the set of quantum effects which represent sharp and unsharp properties of physical systems and play a basic role in the foundations of quantum mechanics. In the present paper, observables on lattice ordered -effect algebras and their “smearings” with respect to (weak) Markov kernels are studied. It is shown that the range of any observable is contained in a block, which is a -MV algebra, and every observable is defined by a smearing of a sharp...
An example of a finite set of projectors in is exhibited for which no 0-1 measure exists.
The notions of a period of an element of a pseudo-BCI-algebra and a periodic pseudo-BCI-algebra are defined. Some of their properties and characterizations are given.
In the paper the connections between the set of some maximal elements of a pseudo-BCI-algebra and deductive systems are established. Using these facts, a periodic part of a pseudo-BCI-algebra is studied.
Once the concept of De Morgan algebra of fuzzy sets on a universe X can be defined, we give a necessary and sufficient condition for a De Morgan algebra to be isomorphic to (represented by) a De Morgan algebra of fuzzy sets.
In the paper, we introduce the notion of annihilators in BL-algebras and investigate some related properties of them. We get that the ideal lattice (I(L), ⊆) is pseudo-complemented, and for any ideal I, its pseudo-complement is the annihilator I⊥ of I. Also, we define the An (L) to be the set of all annihilators of L, then we have that (An(L); ⋂,∧An(L),⊥,0, L) is a Boolean algebra. In addition, we introduce the annihilators of a nonempty subset X of L with respect to an ideal I and study some properties...
Currently displaying 1 –
20 of
121