Displaying 61 – 80 of 708

Showing per page

Almost orthogonality and Hausdorff interval topologies of atomic lattice effect algebras

Jan Paseka, Zdena Riečanová, Junde Wu (2010)

Kybernetika

We prove that the interval topology of an Archimedean atomic lattice effect algebra E is Hausdorff whenever the set of all atoms of E is almost orthogonal. In such a case E is order continuous. If moreover E is complete then order convergence of nets of elements of E is topological and hence it coincides with convergence in the order topology and this topology is compact Hausdorff compatible with a uniformity induced by a separating function family on E corresponding to compact and cocompact elements....

An atomic MV-effect algebra with non-atomic center

Vladimír Olejček (2007)

Kybernetika

Does there exist an atomic lattice effect algebra with non-atomic subalgebra of sharp elements? An affirmative answer to this question (and slightly more) is given: An example of an atomic MV-effect algebra with a non-atomic Boolean subalgebra of sharp or central elements is presented.

An extension method for t-norms on subintervals to t-norms on bounded lattices

Funda Karaçal, Ümit Ertuğrul, M. Nesibe Kesicioğlu (2019)

Kybernetika

In this paper, a construction method on a bounded lattice obtained from a given t-norm on a subinterval of the bounded lattice is presented. The supremum distributivity of the constructed t-norm by the mentioned method is investigated under some special conditions. It is shown by an example that the extended t-norm on L from the t-norm on a subinterval of L need not be a supremum-distributive t-norm. Moreover, some relationships between the mentioned construction method and the other construction...

An ordered structure of pseudo-BCI-algebras

Ivan Chajda, Helmut Länger (2016)

Mathematica Bohemica

In Chajda's paper (2014), to an arbitrary BCI-algebra the author assigned an ordered structure with one binary operation which possesses certain antitone mappings. In the present paper, we show that a similar construction can be done also for pseudo-BCI-algebras, but the resulting structure should have two binary operations and a set of couples of antitone mappings which are in a certain sense mutually inverse. The motivation for this approach is the well-known fact that every commutative BCK-algebra...

Annihilators and deductive systems in commutative Hilbert algebras

Ivan Chajda, Radomír Halaš, Young Bae Jun (2002)

Commentationes Mathematicae Universitatis Carolinae

The properties of deductive systems in Hilbert algebras are treated. If a Hilbert algebra H considered as an ordered set is an upper semilattice then prime deductive systems coincide with meet-irreducible elements of the lattice Ded H of all deductive systems on H and every maximal deductive system is prime. Complements and relative complements of Ded H are characterized as the so called annihilators in H .

Annihilators in BCK-algebras

Radomír Halaš (2003)

Czechoslovak Mathematical Journal

We introduce the concepts of an annihilator and a relative annihilator of a given subset of a BCK-algebra 𝒜 . We prove that annihilators of deductive systems of BCK-algebras are again deductive systems and moreover pseudocomplements in the lattice 𝒟 ( A ) of all deductive systems on 𝒜 . Moreover, relative annihilators of C 𝒟 ( A ) with respect to B 𝒟 ( A ) are introduced and serve as relative pseudocomplements of C w.r.t. B in 𝒟 ( A ) .

Currently displaying 61 – 80 of 708