On sums over partially ordered sets.
The investigation of certain counting functions of elements with given factorization properties in the ring of integers of an algebraic number field gives rise to combinatorial problems in the class group. In this paper a constant arising from the investigation of the number of algebraic integers with factorizations of at most k different lengths is investigated. It is shown that this constant is positive if k is greater than 1 and that it is also positive if k equals 1 and the class group satisfies...
In this paper we investigate the average Horton-Strahler number of all possible tree-structures of binary tries. For that purpose we consider a generalization of extended binary trees where leaves are distinguished in order to represent the location of keys within a corresponding trie. Assuming a uniform distribution for those trees we prove that the expected Horton-Strahler number of a tree with α internal nodes and β leaves that correspond to a key is asymptotically given by provided that α...