Displaying 101 – 120 of 286

Showing per page

Generic extensions of nilpotent k[T]-modules, monoids of partitions and constant terms of Hall polynomials

Justyna Kosakowska (2012)

Colloquium Mathematicae

We prove that the monoid of generic extensions of finite-dimensional nilpotent k[T]-modules is isomorphic to the monoid of partitions (with addition of partitions). This gives us a simple method for computing generic extensions, by addition of partitions. Moreover we give a combinatorial algorithm that calculates the constant terms of classical Hall polynomials.

Ideal version of Ramsey's theorem

Rafał Filipów, Nikodem Mrożek, Ireneusz Recław, Piotr Szuca (2011)

Czechoslovak Mathematical Journal

We consider various forms of Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem which are connected with ideals of subsets of natural numbers. We characterize ideals with properties considered. We show that, in a sense, Ramsey's theorem, the monotone subsequence theorem and the Bolzano-Weierstrass theorem characterize the same class of ideals. We use our results to show some versions of density Ramsey's theorem (these are similar to generalizations shown in [P....

Integer partitions, tilings of 2 D -gons and lattices

Matthieu Latapy (2002)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2 D -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2 D -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Integer Partitions, Tilings of 2D-gons and Lattices

Matthieu Latapy (2010)

RAIRO - Theoretical Informatics and Applications

In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of 2D-gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a 2D-gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.

Currently displaying 101 – 120 of 286