Previous Page 2

Displaying 21 – 33 of 33

Showing per page

Super boson-fermion correspondence

Victor G. Kac, J. W. Van de Leur (1987)

Annales de l'institut Fourier

We establish a super boson-fermion correspondence, generalizing the classical boson-fermion correspondence in 2-dimensional quantum field theory. A new feature of the theory is the essential non-commutativity of bosonic fields. The superbosonic fields obtained by the super bosonization procedure from super fermionic fields form the affine superalgebra g ˜ l 1 | 1 . The converse, super fermionization procedure, requires introduction of the super vertex operators. As applications, we give vertex operator constructions...

Symmetric identity for polynomial sequences satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x )

Farid Bencherif, Rachid Boumahdi, Tarek Garici (2021)

Communications in Mathematics

Using umbral calculus, we establish a symmetric identity for any sequence of polynomials satisfying A n + 1 ' ( x ) = ( n + 1 ) A n ( x ) with A 0 ( x ) a constant polynomial. This identity allows us to obtain in a simple way some known relations involving Apostol-Bernoulli polynomials, ApostolEuler polynomials and generalized Bernoulli polynomials attached to a primitive Dirichlet character.

Currently displaying 21 – 33 of 33

Previous Page 2