-color partition theoretic interpretations of some mock theta functions.
Page 1 Next
Agarwal, A.K. (2004)
The Electronic Journal of Combinatorics [electronic only]
Agarwal, A.K., Balasubrananian, R. (1997)
International Journal of Mathematics and Mathematical Sciences
Doroslovački, Rade, Marković, Olivera (2000)
Novi Sad Journal of Mathematics
Doroslovački, Rade, Marković, Olivera (2000)
Novi Sad Journal of Mathematics
Simonyi, Gábor (2008)
The Electronic Journal of Combinatorics [electronic only]
Emil Schönbaum (1905)
Časopis pro pěstování mathematiky a fysiky
Robert Karpe (1969)
Časopis pro pěstování matematiky
Stănică, Pantelimon (2003)
International Journal of Mathematics and Mathematical Sciences
Cartier, Pierre (1990)
Séminaire Lotharingien de Combinatoire [electronic only]
Coppersmith, Don, Shearer, James B. (1998)
The Electronic Journal of Combinatorics [electronic only]
Kane, Daniel (2004)
Integers
Elkies, Noam D. (2005)
The Electronic Journal of Combinatorics [electronic only]
Clarke, Robert J., Steingrimsson, Einar, Zeng, Jiang (1995)
Séminaire Lotharingien de Combinatoire [electronic only]
Ernest X. W. Xia (2015)
Colloquium Mathematicae
Let denote the number of overpartition pairs of n. Bringmann and Lovejoy (2008) proved that for n ≥ 0, . They also proved that there are infinitely many Ramanujan-type congruences modulo every power of odd primes for . Recently, Chen and Lin (2012) established some Ramanujan-type identities and explicit congruences for . Furthermore, they also constructed infinite families of congruences for modulo 3 and 5, and two congruence relations modulo 9. In this paper, we prove several new infinite...
Sun, Xinyu (2003)
Journal of Integer Sequences [electronic only]
Albert, M.H., Nowakowski, R.J. (2004)
Integers
Gavel, Hillevi, Strimling, Pontus (2004)
Integers
Biane, Philippe (2004)
Séminaire Lotharingien de Combinatoire [electronic only]
Daniel Barsky (1975/1976)
Groupe de travail d'analyse ultramétrique
Emil Kolev (2003)
Open Mathematics
Consider the set A={1,2,3,…,2n}, n≥3 and let x∈ A be unknown element. For given natural number S we are allowed to ask whether x belongs to a subset B of A such that the sum of the elements of B equals S. We investigate for which S it is possible to find x using a nonadaptive search.
Page 1 Next