The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We give a combinatorial interpretation for the positive moments of the values at the edge
of the critical strip of the -functions of modular forms of and . We
deduce some results about the asymptotics of these moments. We extend this interpretation
to the moments twisted by the eigenvalues of Hecke operators.
Floor diagrams are a class of weighted oriented graphs introduced by E. Brugallé and the second author. Tropical geometry arguments lead to combinatorial descriptions of (ordinary and relative) Gromov–Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In a number of cases, these descriptions can be used to obtain explicit (direct or recursive)
formulas for the corresponding enumerative invariants. In particular, we use this approach to enumerate rational...
The memoir presented by Lagrange, which this paper examines, is usually considered as an elegant, but scarcely practicable, contribution to numerical analysis. The purpose of this study is to show the significance of the novel mathematical ideas it contains, and in particular to look at this essay from the perspective of generating function theory, for which the theoretical foundations would be laid some little time later by Laplace. This excursus of Lagrange’s does indeed proffer an abundance of...
Let denote the symmetric group with letters, and the maximal order of an element of . If the standard factorization of into primes is , we define to be ; one century ago, E. Landau proved that and that, when goes to infinity, .There exists a basic algorithm to compute for ; its running time is and the needed memory is ; it allows computing up to, say, one million. We describe an algorithm to calculate for up to . The main idea is to use the so-called -superchampion...
Deux codages sont utilisés sur l’ensemble des permutations ou ordres totaux sur un ensemble fini à éléments et à chacun de ces codages est associé un produit direct d’ordres totaux. On démontre que le diagramme du treillis permutoèdre (ou ordre de Bruhat faible sur le groupe symétrique ) est intersection des diagrammes des deux produits directs de ordres totaux à éléments.
Let pₙ/qₙ = [a₀;a₁,...,aₙ] be the n-th convergent of the continued fraction expansion of [a₀;a₁,a₂,...]. Leaping convergents are those of every r-th convergent (n = 0,1,2,...) for fixed integers r and i with r ≥ 2 and i = 0,1,...,r-1. The leaping convergents for the e-type Hurwitz continued fractions have been studied. In special, recurrence relations and explicit forms of such leaping convergents have been treated. In this paper, we consider recurrence relations and explicit forms of the leaping...
Denote the n-th convergent of the continued fraction by pₙ/qₙ = [a₀;a₁,...,aₙ]. We give some explicit forms of leaping convergents of Tasoev continued fractions. For instance, [0;ua,ua²,ua³,...] is one of the typical types of Tasoev continued fractions. Leaping convergents are of the form (n=0,1,2,...) for fixed integers r ≥ 2 and 0 ≤ i ≤ r-1.
Let p > 3 be a prime, and let Rₚ be the set of rational numbers whose denominator is not divisible by p. Let Pₙ(x) be the Legendre polynomials. In this paper we mainly show that for m,n,t ∈ Rₚ with m≢ 0 (mod p),
and
,
where (a/p) is the Legendre symbol and [x] is the greatest integer function. As an application we solve some conjectures of Z. W. Sun and the author concerning , where m is an integer not divisible by p.
We find limit shapes for a family of multiplicative measures on the set of partitions, induced by exponential generating functions with expansive parameters, ak∼Ckp−1, k→∞, p>0, where C is a positive constant. The measures considered are associated with the generalized Maxwell–Boltzmann models in statistical mechanics, reversible coagulation–fragmentation processes and combinatorial structures, known as assemblies. We prove a central limit theorem for fluctuations of a properly scaled partition...
Currently displaying 1 –
20 of
33