O deduktivním odůvodnění binomialní poučky
Konečná posloupnost reálných čísel se nazývá unimodální, pokud ji lze rozdělit na neklesající a nerostoucí úsek. V textu se zaměříme především na kombinatorické posloupnosti tvořené kombinačními čísly nebo Stirlingovými čísly prvního a druhého druhu. Kromě unimodality se budeme věnovat též příbuznému pojmu logaritmické konkávnosti. Ukážeme, jak tato témata souvisejí s klasickými Newtonovými a Maclaurinovými nerovnostmi, které v závěru využijeme k řešení obecné verze narozeninového paradoxu.
We consider the hard-core lattice gas model on and investigate its phase structure in high dimensions. We prove that when the intensity parameter exceeds , the model exhibits multiple hard-core measures, thus improving the previous bound of given by Galvin and Kahn. At the heart of our approach lies the study of a certain class of edge cutsets in , the so-called odd cutsets, that appear naturally as the boundary between different phases in the hard-core model. We provide a refined combinatorial...