A 2-coloring of can have monochromatic Schur triples, but not less.
Page 1 Next
Robertson, Aaron, Zeilberger, Doron (1998)
The Electronic Journal of Combinatorics [electronic only]
Guo, Victor J.W., Yang, Dan-Mei (2011)
The Electronic Journal of Combinatorics [electronic only]
Shapiro, Louis W., Wang, Carol J. (2009)
Journal of Integer Sequences [electronic only]
Chen, William Y.C., Li, Teresa X.S., Wang, David G.L. (2011)
The Electronic Journal of Combinatorics [electronic only]
Di Francesco, P., Zinn-Justin, P., Zuber, J.-B. (2004)
The Electronic Journal of Combinatorics [electronic only]
Chauve, Cedric (2003)
Discrete Mathematics and Theoretical Computer Science. DMTCS [electronic only]
Callan, David (2007)
The Electronic Journal of Combinatorics [electronic only]
Novick, Mordechai (2010)
The Electronic Journal of Combinatorics [electronic only]
Singer, Dan (2004)
The Electronic Journal of Combinatorics [electronic only]
Singer, Dan W. (1998)
The Electronic Journal of Combinatorics [electronic only]
Krattenthaler, C. (1996)
The Electronic Journal of Combinatorics [electronic only]
Ahlgren, Scott, Ekhad, Shalosh B., Ono, Ken, Zeilberger, Doron (1998)
The Electronic Journal of Combinatorics [electronic only]
Chu, Wenchang (2004)
The Electronic Journal of Combinatorics [electronic only]
Maurice Margenstern, Yuri Matiyasevich (1999)
Acta Arithmetica
Fulman, Jason (2004)
The Electronic Journal of Combinatorics [electronic only]
Paolo Massazza, Roberto Radicioni (2010)
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model(n), a generalization of the sand pile model(n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().
Paolo Massazza, Roberto Radicioni (2011)
RAIRO - Theoretical Informatics and Applications
We present a CAT (constant amortized time) algorithm for generating those partitions of n that are in the ice pile model(n), a generalization of the sand pile model(n). More precisely, for any fixed integer k, we show that the negative lexicographic ordering naturally identifies a tree structure on the lattice (n): this lets us design an algorithm which generates all the ice piles of (n) in amortized time O(1) and in space O().
Barry, Paul (2005)
Journal of Integer Sequences [electronic only]
Paul, Alice, Pippenger, Nicholas (2011)
The Electronic Journal of Combinatorics [electronic only]
Pinn, Klaus (2000)
Experimental Mathematics
Page 1 Next