Displaying 101 – 120 of 152

Showing per page

Orthogonal Resolutions and Latin Squares

Topalova, Svetlana, Zhelezova, Stela (2013)

Serdica Journal of Computing

Resolutions which are orthogonal to at least one other resolution (RORs) and sets of m mutually orthogonal resolutions (m-MORs) of 2-(v, k, λ) designs are considered. A dependence of the number of nonisomorphic RORs and m-MORs of multiple designs on the number of inequivalent sets of v/k − 1 mutually orthogonal latin squares (MOLS) of size m is obtained. ACM Computing Classification System (1998): G.2.1.∗ This work was partially supported by the Bulgarian National Science Fund under Contract No...

Overlapping latin subsquares and full products

Joshua M. Browning, Petr Vojtěchovský, Ian M. Wanless (2010)

Commentationes Mathematicae Universitatis Carolinae

We derive necessary and sufficient conditions for there to exist a latin square of order n containing two subsquares of order a and b that intersect in a subsquare of order c . We also solve the case of two disjoint subsquares. We use these results to show that: (a) A latin square of order n cannot have more than n m n h / m h subsquares of order m , where h = ( m + 1 ) / 2 . Indeed, the number of subsquares of order m is bounded by a polynomial of degree at most 2 m + 2 in n . (b) For all n 5 there exists a loop of order n in which every...

Quasigroup automorphisms and symmetric group characters

Brent Kerby, Jonathan D. H. Smith (2010)

Commentationes Mathematicae Universitatis Carolinae

The automorphisms of a quasigroup or Latin square are permutations of the set of entries of the square, and thus belong to conjugacy classes in symmetric groups. These conjugacy classes may be recognized as being annihilated by symmetric group class functions that belong to a λ -ideal of the special λ -ring of symmetric group class functions.

Quasigroups arisen by right nuclear extension

Péter T. Nagy, Izabella Stuhl (2012)

Commentationes Mathematicae Universitatis Carolinae

The aim of this paper is to prove that a quasigroup Q with right unit is isomorphic to an f -extension of a right nuclear normal subgroup G by the factor quasigroup Q / G if and only if there exists a normalized left transversal Σ Q to G in Q such that the right translations by elements of Σ commute with all right translations by elements of the subgroup G . Moreover, a loop Q is isomorphic to an f -extension of a right nuclear normal subgroup G by a loop if and only if G is middle-nuclear, and there exists...

Currently displaying 101 – 120 of 152