Displaying 241 – 260 of 1135

Showing per page

Covering energy of posets and its bounds

Vandana P. Bhamre, Madhukar M. Pawar (2023)

Mathematica Bohemica

The concept of covering energy of a poset is known and its McClelland type bounds are available in the literature. In this paper, we establish formulas for the covering energy of a crown with 2 n elements and a fence with n elements. A lower bound for the largest eigenvalue of a poset is established. Using this lower bound, we improve the McClelland type bounds for the covering energy for some special classes of posets.

Covering with rectangular pieces.

Iacob, Paul, Marinescu, Daniela, Luca, Cristina (2003)

Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică

Curvature flows of maximal integral triangulations

Roland Bacher (1999)

Annales de l'institut Fourier

This paper describes local configurations of some planar triangulations. A Gauss-Bonnet-like formula holds locally for a kind of discrete “curvature” associated to such triangulations.

Cyclic and dihedral constructions of even order

Aleš Drápal (2003)

Commentationes Mathematicae Universitatis Carolinae

Let G ( ) and G ( * ) be two groups of finite order n , and suppose that they share a normal subgroup S such that u v = u * v if u S or v S . Cases when G / S is cyclic or dihedral and when u v u * v for exactly n 2 / 4 pairs ( u , v ) G × G have been shown to be of crucial importance when studying pairs of 2-groups with the latter property. In such cases one can describe two general constructions how to get all possible G ( * ) from a given G = G ( ) . The constructions, denoted by G [ α , h ] and G [ β , γ , h ] , respectively, depend on a coset α (or two cosets β and γ ) modulo S , and on an...

Decomposition of complete graphs into ( 0 , 2 ) -prisms

Sylwia Cichacz, Soleh Dib, Dalibor Fronček (2014)

Czechoslovak Mathematical Journal

R. Frucht and J. Gallian (1988) proved that bipartite prisms of order 2 n have an α -labeling, thus they decompose the complete graph K 6 n x + 1 for any positive integer x . We use a technique called the ρ + -labeling introduced by S. I. El-Zanati, C. Vanden Eynden, and N. Punnim (2001) to show that also some other families of 3-regular bipartite graphs of order 2 n called generalized prisms decompose the complete graph K 6 n x + 1 for any positive integer x .

Currently displaying 241 – 260 of 1135