Displaying 361 – 380 of 1135

Showing per page

Finite projective planes, Fermat curves, and Gaussian periods

Koen Thas, Don Zagier (2008)

Journal of the European Mathematical Society

One of the oldest and most fundamental problems in the theory of finite projective planes is to classify those having a group which acts transitively on the incident point-line pairs (flags). The conjecture is that the only ones are the Desarguesian projective planes (over a finite field). In this paper, we show that non-Desarguesian finite flag-transitive projective planes exist if and only if certain Fermat surfaces have no nontrivial rational points, and formulate several other equivalences involving...

Forbidden-minor characterization for the class of graphic element splitting matroids

Kiran Dalvi, Y.M. Borse, M.M. Shikare (2009)

Discussiones Mathematicae Graph Theory

This paper is based on the element splitting operation for binary matroids that was introduced by Azadi as a natural generalization of the corresponding operation in graphs. In this paper, we consider the problem of determining precisely which graphic matroids M have the property that the element splitting operation, by every pair of elements on M yields a graphic matroid. This problem is solved by proving that there is exactly one minor-minimal matroid that does not have this property.

Fractal representation of the attractive lamination of an automorphism of the free group

Pierre Arnoux, Valérie Berthé, Arnaud Hilion, Anne Siegel (2006)

Annales de l’institut Fourier

In this paper, we extend to automorphisms of free groups some results and constructions that classically hold for morphisms of the free monoid, i.e., the so-called substitutions. A geometric representation of the attractive lamination of a class of automorphisms of the free group (irreducible with irreducible powers (iwip) automorphisms) is given in the case where the dilation coefficient of the automorphism is a unit Pisot number. The shift map associated with the attractive symbolic lamination...

Frankl’s conjecture for large semimodular and planar semimodular lattices

Gábor Czédli, E. Tamás Schmidt (2008)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A lattice L is said to satisfy (the lattice theoretic version of) Frankl’s conjecture if there is a join-irreducible element f L such that at most half of the elements x of L satisfy f x . Frankl’s conjecture, also called as union-closed sets conjecture, is well-known in combinatorics, and it is equivalent to the statement that every finite lattice satisfies Frankl’s conjecture. Let m denote the number of nonzero join-irreducible elements of L . It is well-known that L consists of at most 2 m elements....

Currently displaying 361 – 380 of 1135