Decomposition of the diagonal action of on the coinvariant space of .
Page 1
Bergeron, F., Lamontagne, F. (2004)
Séminaire Lotharingien de Combinatoire [electronic only]
Lapointe, Luc, Lascoux, A., Morse, J. (2000)
The Electronic Journal of Combinatorics [electronic only]
A. B. Dieker, J. Warren (2008)
Annales de l'I.H.P. Probabilités et statistiques
We find the transition kernels for four markovian interacting particle systems on the line, by proving that each of these kernels is intertwined with a Karlin–McGregor-type kernel. The resulting kernels all inherit the determinantal structure from the Karlin–McGregor formula, and have a similar form to Schütz’s kernel for the totally asymmetric simple exclusion process.
Fiedler, Bernd (2002)
Séminaire Lotharingien de Combinatoire [electronic only]
Aval, J.-C., Bergeron, F., Bergeron, N. (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Didier Arnal, Nadia Bel Baraka, Norman J. Wildberger (2006)
Annales mathématiques Blaise Pascal
In [6], there is a graphic description of any irreducible, finite dimensional module. This construction, called diamond representation is very simple and can be easily extended to the space of irreducible finite dimensional -modules.In the present work, we generalize this construction to . We show it is in fact a description of the reduced shape algebra, a quotient of the shape algebra of . The basis used in [6] is thus naturally parametrized with the so called quasi standard Young tableaux....
Timofte, Vlad (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Benoît Collins, Hun Hee Lee, Piotr Śniady (2014)
Studia Mathematica
We give universal upper bounds on the relative dimensions of isotypic components of a tensor product of representations of the linear group GL(n) and universal upper bounds on the relative dimensions of irreducible components of a tensor product of representations of the special linear group SL(n). This problem is motivated by harmonic analysis problems, and we give some applications to the theory of Beurling-Fourier algebras.
Haemers, Willem H. (1997)
The Electronic Journal of Combinatorics [electronic only]
Han, Guo-Niu (2008)
The Electronic Journal of Combinatorics [electronic only]
Bousquet-Mélou, Mireille (2006)
Séminaire Lotharingien de Combinatoire [electronic only]
Tucker, Thomas W. (2011)
The Electronic Journal of Combinatorics [electronic only]
Laflamme, C., Van Thé, L.Nguyen, Sauer, N. (2010)
The Electronic Journal of Combinatorics [electronic only]
Wenchang Chu (1999)
Bollettino dell'Unione Matematica Italiana
L'operatore di differenze multivariate è utilizzato per stabilire varie formule di somme riguardanti le funzioni simmetriche, le quali hanno uno stretto legame con le identità del «termine costante».
Cameron, Naiomi, Killpatrick, Kendra (2006)
The Electronic Journal of Combinatorics [electronic only]
Carré, Christophe, Leclerc, Bernard (1993)
Séminaire Lotharingien de Combinatoire [electronic only]
van Leeuwen, Marc A.A. (2006)
The Electronic Journal of Combinatorics [electronic only]
Andrew Kresch, Harry Tamvakis (2002)
Annales de l’institut Fourier
We propose a theory of double Schubert polynomials for the Lie types , , which naturally extends the family of Lascoux and Schützenberger in type . These polynomials satisfy positivity, orthogonality and stability properties, and represent the classes of Schubert varieties and degeneracy loci of vector bundles. When is a maximal Grassmannian element of the Weyl group, can be expressed in terms of Schur-type determinants and Pfaffians, in analogy with the type formula of Kempf and Laksov....
Jia, Ning, Miller, Ezra (2007)
Séminaire Lotharingien de Combinatoire [electronic only]
Page 1