Page 1 Next

Displaying 1 – 20 of 27

Showing per page

Parabolic bundles, products of conjugacy classes, and Gromov-Witten invariants

Constantin Teleman, Christopher Woodward (2003)

Annales de l’institut Fourier

The set of conjugacy classes appearing in a product of conjugacy classes in a compact, 1 -connected Lie group K can be identified with a convex polytope in the Weyl alcove. In this paper we identify linear inequalities defining this polytope. Each inequality corresponds to a non-vanishing Gromov-Witten invariant for a generalized flag variety G / P , where G is the complexification of K and P is a maximal parabolic subgroup. This generalizes the results for S U ( n ) of Agnihotri and the second author and Belkale on...

Pebblings.

Eriksson, Henrik (1995)

The Electronic Journal of Combinatorics [electronic only]

Pieri's formula for flag manifolds and Schubert polynomials

Frank Sottile (1996)

Annales de l'institut Fourier

We establish the formula for multiplication by the class of a special Schubert variety in the integral cohomology ring of the flag manifold. This formula also describes the multiplication of a Schubert polynomial by either an elementary or a complete symmetric polynomial. Thus, we generalize the classical Pieri’s formula for Schur polynomials (associated to Grassmann varieties) to Schubert polynomials (associated to flag manifolds). Our primary technique is an explicit geometric description of certain...

Positivity of Schur function expansions of Thom polynomials

Piotr Pragacz, Andrzej Weber (2007)

Fundamenta Mathematicae

Combining the approach to Thom polynomials via classifying spaces of singularities with the Fulton-Lazarsfeld theory of cone classes and positive polynomials for ample vector bundles, we show that the coefficients of the Schur function expansions of the Thom polynomials of stable singularities are nonnegative with positive sum.

Positivity of Thom polynomials II: the Lagrange singularities

Małgorzata Mikosz, Piotr Pragacz, Andrzej Weber (2009)

Fundamenta Mathematicae

We study Thom polynomials associated with Lagrange singularities. We expand them in the basis of Q̃-functions. This basis plays a key role in the Schubert calculus of isotropic Grassmannians. We prove that the Q̃-function expansions of the Thom polynomials of Lagrange singularities always have nonnegative coefficients. This is an analog of a result on the Thom polynomials of mapping singularities and Schur S-functions, established formerly by the last two authors.

Pretty cleanness and filter-regular sequences

Somayeh Bandari, Kamran Divaani-Aazar, Ali Soleyman Jahan (2014)

Czechoslovak Mathematical Journal

Let K be a field and S = K [ x 1 , ... , x n ] . Let I be a monomial ideal of S and u 1 , ... , u r be monomials in S . We prove that if u 1 , ... , u r form a filter-regular sequence on S / I , then S / I is pretty clean if and only if S / ( I , u 1 , ... , u r ) is pretty clean. Also, we show that if u 1 , ... , u r form a filter-regular sequence on S / I , then Stanley’s conjecture is true for S / I if and only if it is true for S / ( I , u 1 , ... , u r ) . Finally, we prove that if u 1 , ... , u r is a minimal set of generators for I which form either a d -sequence, proper sequence or strong s -sequence (with respect to the reverse lexicographic...

Currently displaying 1 – 20 of 27

Page 1 Next