Deux définitions des algèbres de Heyting trivalentes involutives
For a class of structures and let resp. denote the lattices of -congruences resp. -congruences of , cf. Weaver [25]. Let where is the operator of forming isomorphic copies, and . For an ordered algebra the lattice of order congruences of is denoted by , and let if is a class of ordered algebras. The operators of forming subdirect squares and direct products are denoted by and , respectively. Let be a lattice identity and let be a set of lattice identities. Let denote...
This note deals with two logical topics and concerns Boolean Algebras from an elementary point of view. First we consider the class of operations on a Boolean Algebra that can be used for modelling If-then propositions. These operations, or Conditionals, are characterized under the hypothesis that they only obey to the Modus Ponens-Inequality, and it is shown that only six of them are boolean two-place functions. Is the Conditional Probability the Probability of a Conditional? This problem will...
In an algebraic frame the dimension, , is defined, as in classical ideal theory, to be the maximum of the lengths of chains of primes , if such a maximum exists, and otherwise. A notion of “dominance” is then defined among the compact elements of , which affords one a primefree way to compute dimension. Various subordinate dimensions are considered on a number of frame quotients of , including the frames and of -elements and -elements, respectively. The more concrete illustrations...
This paper continues the investigation into Krull-style dimensions in algebraic frames. Let be an algebraic frame. is the supremum of the lengths of sequences of (proper) prime elements of . Recently, Th. Coquand, H. Lombardi and M.-F. Roy have formulated a characterization which describes the dimension of in terms of the dimensions of certain boundary quotients of . This paper gives a purely frame-theoretic proof of this result, at once generalizing it to frames which are not necessarily...