Page 1 Next

Displaying 1 – 20 of 394

Showing per page

A binary operation-based representation of a lattice

Mourad Yettou, Abdelaziz Amroune, Lemnaouar Zedam (2019)

Kybernetika

In this paper, we study and characterize some properties of a given binary operation on a lattice. More specifically, we show necessary and sufficient conditions under which a binary operation on a lattice coincides with its meet (resp. its join) operation. Importantly, we construct two new posets based on a given binary operation on a lattice and investigate some cases that these two posets have a lattice structure. Moreover, we provide some representations of a given lattice based on these new...

A Cantor-Bernstein theorem for σ -complete MV-algebras

Anna de Simone, Daniele Mundici, Mirko Navara (2003)

Czechoslovak Mathematical Journal

The Cantor-Bernstein theorem was extended to σ -complete boolean algebras by Sikorski and Tarski. Chang’s MV-algebras are a nontrivial generalization of boolean algebras: they stand to the infinite-valued calculus of Łukasiewicz as boolean algebras stand to the classical two-valued calculus. In this paper we further generalize the Cantor-Bernstein theorem to σ -complete MV-algebras, and compare it to a related result proved by Jakubík for certain complete MV-algebras.

A categorical account of the localic closed subgroup theorem

Christopher Townsend (2007)

Commentationes Mathematicae Universitatis Carolinae

Given an axiomatic account of the category of locales the closed subgroup theorem is proved. The theorem is seen as a consequence of a categorical account of the Hofmann-Mislove theorem. The categorical account has an order dual providing a new result for locale theory: every compact subgroup is necessarily fitted.

A categorical view at generalized concept lattices

Stanislav Krajči (2007)

Kybernetika

We continue in the direction of the ideas from the Zhang’s paper [Z] about a relationship between Chu spaces and Formal Concept Analysis. We modify this categorical point of view at a classical concept lattice to a generalized concept lattice (in the sense of Krajči [K1]): We define generalized Chu spaces and show that they together with (a special type of) their morphisms form a category. Moreover we define corresponding modifications of the image / inverse image operator and show their commutativity...

A characterization of 1-, 2-, 3-, 4-homomorphisms of ordered sets

Radomír Halaš, Daniel Hort (2003)

Czechoslovak Mathematical Journal

We characterize totally ordered sets within the class of all ordered sets containing at least four-element chains. We use a simple relationship between their isotone transformations and the so called 1-endomorphism which is introduced in the paper. Later we describe 1-, 2-, 3-, 4-homomorphisms of ordered sets in the language of super strong mappings.

A characterization of commutative basic algebras

Ivan Chajda (2009)

Mathematica Bohemica

A basic algebra is an algebra of the same type as an MV-algebra and it is in a one-to-one correspondence to a bounded lattice having antitone involutions on its principal filters. We present a simple criterion for checking whether a basic algebra is commutative or even an MV-algebra.

A characterization of complete atomic Boolean algebra.

Francesc Esteva (1977)

Stochastica

In this note we give a characterization of complete atomic Boolean algebras by means of complete atomic lattices. We find that unicity of the representation of the maximum as union of atoms and Lambda-infinite distributivity law are necessary and sufficient conditions for the lattice to be a complete atomic Boolean algebra.

A characterization of finite Stone pseudocomplemented ordered sets

Radomír Halaš (1996)

Mathematica Bohemica

A distributive pseudocomplemented set S [2] is called Stone if for all a S the condition L U ( a * , a * * ) = S holds. It is shown that in a finite case S is Stone iff the join of all distinct minimal prime ideals of S is equal to S .

Currently displaying 1 – 20 of 394

Page 1 Next