Filters and annihilators in implication algebras
We prove that a finite atomistic lattice can be represented as a lattice of quasivarieties if and only if it is isomorphic to the lattice of all subsemilattices of a finite semilattice. This settles a conjecture that appeared in the context of [11].
Given a locale and a join semilattice with bottom element , a new concept called -slice is defined,where is as an action of the locale on the join semilattice . The -slice adopts topological properties of the locale through the action . It is shown that for each , is an interior operator on .The collection is a Priestly space and a subslice of -. If the locale is spatial we establish an isomorphism between the -slices and . We have shown that the fixed set of ,...
We use a set theoretic approach to consensus by viewing an object as a set of smaller pieces called “bricks”. A consensus function is neutral if there exists a family D of sets such that a brick s is in the output of a profile if and only if the set of positions with objects that contain s belongs to D. We give sufficient set theoretic conditions for D to be a lattice filter and, in the case of a finite lattice, these conditions turn out to be necessary. Ourfinal result, which involves a finite...