The epis of
Denecke and Reichel have described a method of studying the lattice of all varieties of a given type by using monoids of hypersubstitutions. In this paper we develop a Galois correspondence between monoids of hypersubstitutions of a given type and lattices of subvarieties of a given variety of that type. We then apply the results obtained to the lattice of varieties of bands (idempotent semigroups), and study the complete sublattices of this lattice obtained through the Galois correspondence.
We attach to each -semilattice a graph whose vertices are join-irreducible elements of and whose edges correspond to the reflexive dependency relation. We study properties of the graph both when is a join-semilattice and when it is a lattice. We call a -semilattice particle provided that the set of its join-irreducible elements satisfies DCC and join-generates . We prove that the congruence lattice of a particle lattice is anti-isomorphic to the lattice of all hereditary subsets of...
A method is presented for proving primality and functional completeness theorems, which makes use of the operation-relation duality. By the result of Sierpiński, we have to investigate relations generated by the two-element subsets of only. We show how the method applies for proving Słupecki’s classical theorem by generating diagonal relations from each pair of k-tuples.
We give an equational description of all idempotent groupoids with at most three essentially n-ary term operations.