On the lattice of subalgebras of a Boolean algebra
Through the study of frame congruences, new characterizations of the paracompactness of frames are obtained.
We show that the class of principal ideals and the class of semiprime ideals are rhomboidal hereditary in the class of modular lattices. Similar results are presented for the class of ideals with forbidden exterior quotients and for the class of prime ideals.
This paper grew out from attempts to determine which modular lattices of finite height are locally order affine complete. A surprising discovery was that one can go quite far without assuming the modularity itself. The only thing which matters is that the congruence lattice is finite Boolean. The local order affine completeness problem of such lattices easily reduces to the case when is a subdirect product of two simple lattices and . Our main result claims that such a lattice is locally...