A note on continuous partially ordered sets.
-continuous posets are common generalizations of continuous posets, completely distributive lattices, and unique factorization posets. Though the algebraic properties of -continuous posets had been studied by several authors, the topological properties are rather unknown. In this short note an intrinsic topology on a -continuous poset is defined and its properties are explored.
In this paper, the α waybelow relation, which is determined by O2-convergence, is characterized by the order on a poset, and a sufficient and necessary condition for O2-convergence to be topological is obtained.