Displaying 21 – 40 of 217

Showing per page

An extension theorem for modular measures on effect algebras

Giuseppina Barbieri (2009)

Czechoslovak Mathematical Journal

We prove an extension theorem for modular measures on lattice ordered effect algebras. This is used to obtain a representation of these measures by the classical ones. With the aid of this theorem we transfer control theorems, Vitali-Hahn-Saks, Nikodým theorems and range theorems to this setting.

An orthogonality-based classification of conjectures in ortholattices.

Enric Trillas, Ana Pradera (2006)

Mathware and Soft Computing

A mathematical model for conjectures (including hypotheses, consequences and speculations), was recently introduced, in the context of ortholattices, by Trillas, Cubillo and Castiñeira (Artificial Intelligence 117, 2000, 255-257). The aim of the present paper is to further clarify the structure of this model by studying its relationships with one of the most important ortholattices' relation, the orthogonality relation. The particular case of orthomodular lattices -the framework for both Boolean...

Automorphisms of concrete logics

Mirko Navara, Josef Tkadlec (1991)

Commentationes Mathematicae Universitatis Carolinae

The main result of this paper is Theorem 3.3: Every concrete logic (i.e., every set-representable orthomodular poset) can be enlarged to a concrete logic with a given automorphism group and with a given center. Since every sublogic of a concrete logic is concrete, too, and since not every state space of a (general) quantum logic is affinely homeomorphic to the state space of a concrete logic [8], our result seems in a sense the best possible. Further, we show that every group is an automorphism...

Averaging premises.

Enric Trillas, Elena E. Castiñeira, Susana Cubillo (2001)

Mathware and Soft Computing

This paper deals with the sets of strict conjectures and consequences of a given collection P of premises. The set of Averaging Functions is introduced on lattices and some properties of these functions are shown. Averaging Functions allow to interpret restricted consequences as averages of premises. The subset of consequences C9*(P) and the subset of conjectures Φg*(P) defined by means of the averaging function g are introduced, and their properties are studied. This sets allow to give decomposition...

A-Verbände I

M. Stern, A. KERTÉSZ (1971)

Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry

Axiomatizing quantum MV-algebras.

Roberto Giuntini (1997)

Mathware and Soft Computing

We introduce the notion of p-ideal of a QMV-algebra and we prove that the class of all p-ideals of a QMV-algebra M is in one-to-one correspondence with the class of all congruence relations of M.

Balanced d-lattices are complemented

Martin Goldstern, Miroslav Ploščica (2002)

Discussiones Mathematicae - General Algebra and Applications

We characterize d-lattices as those bounded lattices in which every maximal filter/ideal is prime, and we show that a d-lattice is complemented iff it is balanced iff all prime filters/ideals are maximal.

Basic pseudorings

Ivan Chajda, Miroslav Kolařík (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

The concept of a basic pseudoring is introduced. It is shown that every orthomodular lattice can be converted into a basic pseudoring by using of the term operation called Sasaki projection. It is given a mutual relationship between basic algebras and basic pseudorings. There are characterized basic pseudorings which can be converted into othomodular lattices.

Characterizations of 0-distributive posets

Vinayak V. Joshi, B. N. Waphare (2005)

Mathematica Bohemica

The concept of a 0-distributive poset is introduced. It is shown that a section semicomplemented poset is distributive if and only if it is 0-distributive. It is also proved that every pseudocomplemented poset is 0-distributive. Further, 0-distributive posets are characterized in terms of their ideal lattices.

c-ideals in complemented posets

Ivan Chajda, Miroslav Kolařík, Helmut Länger (2024)

Mathematica Bohemica

In their recent paper on posets with a pseudocomplementation denoted by * the first and the third author introduced the concept of a * -ideal. This concept is in fact an extension of a similar concept introduced in distributive pseudocomplemented lattices and semilattices by several authors, see References. Now we apply this concept of a c-ideal (dually, c-filter) to complemented posets where the complementation need neither be antitone nor an involution, but still satisfies some weak conditions....

Currently displaying 21 – 40 of 217