Orthomodular lattices with almost orthogonal sets of atoms
The set of all atoms of an atomic orthomodular lattice is said to be almost orthogonal if the set is finite for every . It is said to be strongly almost orthogonal if, for every , any sequence of atoms such that contains at most finitely many distinct elements. We study the relation and consequences of these notions. We show among others that a complete atomic orthomodular lattice is a compact topological one if and only if the set of all its atoms is almost orthogonal.