Displaying 121 – 140 of 408

Showing per page

Goldie extending elements in modular lattices

Shriram K. Nimbhorkar, Rupal C. Shroff (2017)

Mathematica Bohemica

The concept of a Goldie extending module is generalized to a Goldie extending element in a lattice. An element a of a lattice L with 0 is said to be a Goldie extending element if and only if for every b a there exists a direct summand c of a such that b c is essential in both b and c . Some properties of such elements are obtained in the context of modular lattices. We give a necessary condition for the direct sum of Goldie extending elements to be Goldie extending. Some characterizations of a decomposition...

Graph automorphisms and cells of lattices

Ján Jakubík (2003)

Czechoslovak Mathematical Journal

In this paper we apply the notion of cell of a lattice for dealing with graph automorphisms of lattices (in connection with a problem proposed by G. Birkhoff).

Group-valued measures on coarse-grained quantum logics

Anna de Simone, Pavel Pták (2007)

Czechoslovak Mathematical Journal

In it was shown that a (real) signed measure on a cyclic coarse-grained quantum logic can be extended, as a signed measure, over the entire power algebra. Later () this result was re-proved (and further improved on) and, moreover, the non-negative measures were shown to allow for extensions as non-negative measures. In both cases the proof technique used was the technique of linear algebra. In this paper we further generalize the results cited by extending group-valued measures on cyclic coarse-grained...

Horizontal sums of basic algebras

Ivan Chajda (2009)

Discussiones Mathematicae - General Algebra and Applications

The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.

Hypersubstitutions in orthomodular lattices

Ivan Chajda, Helmut Länger (2001)

Discussiones Mathematicae - General Algebra and Applications

It is shown that in the variety of orthomodular lattices every hypersubstitution respecting all absorption laws either leaves the lattice operations unchanged or interchanges join and meet. Further, in a variety of lattices with an involutory antiautomorphism a semigroup generated by three involutory hypersubstitutions is described.

Ideals, congruences and annihilators on nearlattices

Ivan Chajda, Miroslav Kolařík (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or 0 -distributivity of nearlattices by means of certain properties of annihilators.

Implication algebras

Ivan Chajda (2006)

Discussiones Mathematicae - General Algebra and Applications

We introduce the concepts of pre-implication algebra and implication algebra based on orthosemilattices which generalize the concepts of implication algebra, orthoimplication algebra defined by J.C. Abbott [2] and orthomodular implication algebra introduced by the author with his collaborators. For our algebras we get new axiom systems compatible with that of an implication algebra. This unified approach enables us to compare the mentioned algebras and apply a unified treatment of congruence properties....

Implication and equivalential reducts of basic algebras

Ivan Chajda, Miroslav Kolařík, Filip Švrček (2010)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

A term operation implication is introduced in a given basic algebra 𝒜 and properties of the implication reduct of 𝒜 are treated. We characterize such implication basic algebras and get congruence properties of the variety of these algebras. A term operation equivalence is introduced later and properties of this operation are described. It is shown how this operation is related with the induced partial order of 𝒜 and, if this partial order is linear, the algebra 𝒜 can be reconstructed by means of...

Currently displaying 121 – 140 of 408