On a certain construction of MS-algebras.
In this paper we investigate the class of all modular GMS-algebras which contains the class of MS-algebras. We construct modular GMS-algebras from the variety by means of -quadruples. We also characterize isomorphisms of these algebras by means of -quadruples.
Once the concept of De Morgan algebra of fuzzy sets on a universe X can be defined, we give a necessary and sufficient condition for a De Morgan algebra to be isomorphic to (represented by) a De Morgan algebra of fuzzy sets.
n×m-valued Łukasiewicz algebras with negation were introduced and investigated in [20, 22, 23]. These algebras constitute a non trivial generalization of n-valued Łukasiewicz-Moisil algebras and in what follows, we shall call them n×m-valued Łukasiewicz-Moisil algebras (or LM n×m -algebras). In this paper, the study of this new class of algebras is continued. More precisely, a topological duality for these algebras is described and a characterization of LM n×m -congruences in terms of special subsets...
This paper deals with a new interpretation of a special functional characterisation of Sheffer strokes, with the study of morphisms and the construction of different De Morgan Algebras on a given set.
In this paper the classes of De Morgan algebras (P(X),∩,U,n) are studied. With respect to isomorphisms of such algebras, being P(X) the fuzzy sets on a universe X taking values in [0,1], U and ∩ the usual union and intersection given by max and min operations and n a proper complement.
For an n-valued Łukasiewicz-Moisil algebra L (or LM n-algebra for short) we denote by F n(L) the lattice of all n-filters of L. The goal of this paper is to study the lattice F n(L) and to give new characterizations for the meet-irreducible and completely meet-irreducible elements on F n(L).
A maximal disjoint subset S of an MV-algebra A is a basis iff {x in A : x ≤ a} is a linearly ordered subset of A for all a in S. Let Spec A be the set of the prime ideals of A with the usual spectral topology. A decomposition Spec A = Ui in I Ti U X is said to be orthogonal iff each Ti is compact open and S = {ai}i in I is a maximal disjoint subset. We prove that this decomposition is unrefinable (i.e. no Ti = Theta ∩ Y with Theta open, Theta ∩ Y = emptyset, int Y = emptyset) iff S is a basis. Many...