The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or -distributivity of nearlattices by means of certain properties of annihilators.
In this paper, we study two kinds of combinatorial objects, generalized integer partitions and tilings of -gons (hexagons, octagons, decagons, etc.). We show that the sets of partitions, ordered with a simple dynamics, have the distributive lattice structure. Likewise, we show that the set of tilings of a -gon is the disjoint union of distributive lattices which we describe. We also discuss the special case of linear integer partitions, for which other dynamical models exist.
In this paper, we study two kinds of combinatorial
objects, generalized integer partitions and tilings of 2D-gons
(hexagons, octagons, decagons, etc.).
We show that the sets of partitions,
ordered with a simple dynamics, have the distributive lattice structure.
Likewise, we show that the set of tilings of a 2D-gon
is the disjoint union of distributive
lattices which we describe.
We also discuss the special case of linear integer
partitions, for which other dynamical models exist.
Currently displaying 1 –
4 of
4