Displaying 161 – 180 of 467

Showing per page

Generalized free products

J. D. Monk (2001)

Colloquium Mathematicae

A subalgebra B of the direct product i I A i of Boolean algebras is finitely closed if it contains along with any element f any other member of the product differing at most at finitely many places from f. Given such a B, let B* be the set of all members of B which are nonzero at each coordinate. The generalized free product corresponding to B is the subalgebra of the regular open algebra with the poset topology on B* generated by the natural basic open sets. Properties of this product are developed....

Historic forcing for Depth

Andrzej Rosłanowski, Saharon Shelah (2001)

Colloquium Mathematicae

We show that, consistently, for some regular cardinals θ <λ, there exists a Boolean algebra 𝔹 such that |𝔹| = λ⁺ and for every subalgebra 𝔹'⊆ 𝔹 of size λ⁺ we have Depth(𝔹') = θ.

Hopfian and co-Hopfian objects.

Kalathoor Varadarajan (1992)

Publicacions Matemàtiques

The aim of the present paper is to study Hopfian and Co-Hopfian objects in categories like the category of rings, the module categories A-mod and mod-A for any ring A. Using Stone's representation theorem any Boolean ring can be regarded as the ring A of clopen subsets of compact Hausdorff totally disconnected space X. It turns out that the Boolean ring A will be Hopfian (resp. co-Hopfian) if and only if the space X is co-Hopfian (resp. Hopfian) in the category Top. For any compact Hausdorff space...

Horizontal sums of basic algebras

Ivan Chajda (2009)

Discussiones Mathematicae - General Algebra and Applications

The variety of basic algebras is closed under formation of horizontal sums. We characterize when a given basic algebra is a horizontal sum of chains, MV-algebras or Boolean algebras.

Ideal independence, free sequences, and the ultrafilter number

Kevin Selker (2015)

Commentationes Mathematicae Universitatis Carolinae

We make use of a forcing technique for extending Boolean algebras. The same type of forcing was employed in Baumgartner J.E., Komjáth P., Boolean algebras in which every chain and antichain is countable, Fund. Math. 111 (1981), 125–133, Koszmider P., Forcing minimal extensions of Boolean algebras, Trans. Amer. Math. Soc. 351 (1999), no. 8, 3073–3117, and elsewhere. Using and modifying a lemma of Koszmider, and using CH, we obtain an atomless BA, A such that 𝔣 ( A ) = s mm ( A ) < 𝔲 ( A ) , answering questions raised by Monk...

Currently displaying 161 – 180 of 467