T-categories and some representation theorems
If is a commutative ring with identity and is defined by letting mean or , then is a partially ordered ring. Necessary and sufficient conditions on are given for to be a lattice, and conditions are given for it to be modular or distributive. The results are applied to the rings of integers mod for . In particular, if is reduced, then is a lattice iff is a weak Baer ring, and is a distributive lattice iff is a Boolean ring, , , or a four element field.
Effect algebras are very natural logical structures as carriers of probabilities and states. They were introduced for modeling of sets of propositions, properties, questions, or events with fuzziness, uncertainty or unsharpness. Nevertheless, there are effect algebras without any state, and questions about the existence (for non-modular) are still unanswered. We show that every Archimedean atomic lattice effect algebra with at most five blocks (maximal MV-subalgebras) has at least one state, which...
We prove the –version of the Joly–Becker theorem: a skew field admits a –ordering of level iff it admits a –ordering of level for some (resp. all) odd . For skew fields with an imaginary unit and fields stronger results are given: a skew field with imaginary unit that admits a –ordering of higher level also admits a –ordering of level . Every field that admits a –ordering of higher level admits a –ordering of level or
The main result of the paper characterizes continuous local derivations on a class of commutative Banach algebra that all of its squares are positive and satisfying the following property: Every continuous bilinear map from into an arbitrary Banach space such that whenever , satisfies the condition for all .
Let be an Archimedean partially ordered ring in which the square of every element is positive, and the set of all nilpotent elements of . It is shown that is the unique nil radical of , and that is locally nilpotent and even nilpotent with exponent at most when is 2-torsion-free. is without non-zero nilpotents if and only if it is 2-torsion-free and has zero annihilator. The results are applied on partially ordered rings in which every element is expressed as with positive ,...
Let and be two Archimedean vector lattices and let and be their order continuous order biduals. If is a positive orthosymmetric bimorphism, then the triadjoint of is inevitably orthosymmetric. This leads to a new and short proof of the commutativity of almost -algebras.