Displaying 141 – 160 of 161

Showing per page

Constructions of cell algebras

Alfonz Haviar, Gabriela Monoszová (2005)

Mathematica Bohemica

A construction of cell algebras is introduced and some of their properties are investigated. A particular case of this construction for lattices of nets is considered.

Constructions over tournaments

Jaroslav Ježek (2003)

Czechoslovak Mathematical Journal

We investigate tournaments that are projective in the variety that they generate, and free algebras over partial tournaments in that variety. We prove that the variety determined by three-variable equations of tournaments is not locally finite. We also construct infinitely many finite, pairwise incomparable simple tournaments.

Controllable and tolerable generalized eigenvectors of interval max-plus matrices

Matej Gazda, Ján Plavka (2021)

Kybernetika

By max-plus algebra we mean the set of reals equipped with the operations a b = max { a , b } and a b = a + b for a , b . A vector x is said to be a generalized eigenvector of max-plus matrices A , B ( m , n ) if A x = λ B x for some λ . The investigation of properties of generalized eigenvectors is important for the applications. The values of vector or matrix inputs in practice are usually not exact numbers and they can be rather considered as values in some intervals. In this paper the properties of matrices and vectors with inexact (interval) entries...

Convex sets in algebras

Radim Bělohlávek (2002)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Coproducts of ideal monads

Neil Ghani, Tarmo Uustalu (2004)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

The question of how to combine monads arises naturally in many areas with much recent interest focusing on the coproduct of two monads. In general, the coproduct of arbitrary monads does not always exist. Although a rather general construction was given by Kelly [Bull. Austral. Math. Soc. 22 (1980) 1–83], its generality is reflected in its complexity which limits the applicability of this construction. Following our own research [C. Lüth and N. Ghani, Lect. Notes Artif. Intell. 2309 (2002) 18–32],...

Coproducts of Ideal Monads

Neil Ghani, Tarmo Uustalu (2010)

RAIRO - Theoretical Informatics and Applications

The question of how to combine monads arises naturally in many areas with much recent interest focusing on the coproduct of two monads. In general, the coproduct of arbitrary monads does not always exist. Although a rather general construction was given by Kelly  [Bull.  Austral. Math. Soc.22 (1980) 1–83], its generality is reflected in its complexity which limits the applicability of this construction. Following our own research [C. Lüth and N. Ghani, Lect. Notes Artif. Intell.2309 (2002)...

Currently displaying 141 – 160 of 161