Linear and -linear betweenness spaces
This paper considers compositions of relations based on the notion of the afterset and the foreset, i. e., the subproduct, the superproduct and the square product introduced by Bandler and Kohout with modification proposed by De Baets and Kerre. There are proven all possible mixed pseudo-associativity properties of Bandler – Kohout compositions of relations.
We describe the free objects in the variety of algebras involving several mutually distributive binary operations. Also, we show how an associative operation can be constructed on such systems in good cases, thus obtaining a two way correspondence between LD-monoids (sets with a left self-distributive and a compatible associative operation) and multi-LD-systems (sets with a family of mutually distributive operations).
Basic concepts concerning binary and ternary relations are extended to relations of arbitrary arities and then investigated.
Intervals in binary or n-ary relations or other discrete structures generalize the concept of interval in an ordered set. They are defined abstractly as closed sets of a closure system on a set V, satisfying certain axioms. Decompositions are partitions of V whose blocks are intervals, and they form an algebraic semimodular lattice. Lattice-theoretical properties of decompositions are explored, and connections with particular types of intervals are established.
For an arbitrary h-ary relation ρ we are interested to express n-clone Polⁿρ in terms of some subsets of the set of all n-ary operations Oⁿ(A) on a finite set A, which are in general not clones but we can obtain Polⁿρ from these sets by using intersection and union. Therefore we specify the concept a function preserves a relation and moreover, we study the properties of this new concept and the connection between these sets and Polⁿρ. Particularly we study for arbitrary partial order relations,...