Caratterizzazione di una classe di anelli generalizzati
The aim of this paper is to define and study cardinal (direct) and ordinal operations of addition, multiplication, and exponentiation for -ary relational systems. -ary ordered sets are defined as special -ary relational systems by means of properties that seem to suitably generalize reflexivity, antisymmetry, and transitivity from the case of or 3. The class of -ary ordered sets is then closed under the cardinal and ordinal operations.
It is well-known that the composition of two functors between categories yields a functor again, whenever it exists. The same is true for functors which preserve in a certain sense the structure of symmetric monoidal categories. Considering small symmetric monoidal categories with an additional structure as objects and the structure preserving functors between them as morphisms one obtains different kinds of functor categories, which are even dt-symmetric categories.
By an equivalence system is meant a couple where is a non-void set and is an equivalence on . A mapping of an equivalence system into is called a class preserving mapping if for each . We will characterize class preserving mappings by means of permutability of with the equivalence induced by .
We introduce a special set of relations called clausal relations. We study a Galois connection Pol-CInv between the set of all finitary operations on a finite set D and the set of clausal relations, which is a restricted version of the Galois connection Pol-Inv. We define C-clones as the Galois closed sets of operations with respect to Pol-CInv and describe the lattice of all C-clones for the Boolean case D = {0,1}. Finally we prove certain results about C-clones over a larger set.
In a groupoid, consider arbitrarily parenthesized expressions on the variables where each appears once and all variables appear in order of their indices. We call these expressions -ary formal products, and denote the set containing all of them by . If are distinct, the statement that and are equal for all values of is a generalized associative law. Among other results, we show that many small groupoids are completely dissociative, meaning that no generalized associative law holds...
We show that every function f: A × B → A × B, where |A| ≤ 3 and |B| < ω, can be represented as a composition f₁ ∘ f₂ ∘ f₃ ∘ f₄ of four axial functions, where f₁ is a vertical function. We also prove that for every finite set A of cardinality at least 3, there exist a finite set B and a function f: A × B → A × B such that f ≠ f₁ ∘ f₂ ∘ f₃ ∘ f₄ for any axial functions f₁, f₂, f₃, f₄, whenever f₁ is a horizontal function.