A characterization of K-ary algebraic categories.
Some geometrical methods, the so called Triangular Schemes and Principles, are introduced and investigated for weak congruences of algebras. They are analogues of the corresponding notions for congruences. Particular versions of Triangular Schemes are equivalent to weak congruence modularity and to weak congruence distributivity. For algebras in congruence permutable varieties, stronger properties—Triangular Principles—are equivalent to weak congruence modularity and distributivity.
We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.
The clone lattice Cl(X) over an infinite set X is a complete algebraic lattice with compact elements. We show that every algebraic lattice with at most compact elements is a complete sublattice of Cl(X).
In Universal Algebra, identities are used to classify algebras into collections, called varieties and hyperidentities are use to classify varieties into collections, called hypervarities. The concept of a hypersubstitution is a tool to study hyperidentities and hypervarieties. Generalized hypersubstitutions and strong identities generalize the concepts of a hypersubstitution and of a hyperidentity, respectively. The set of all generalized hypersubstitutions forms a monoid. In...