On a characterization of the lattice of subsystems of a transition system.
Page 1 Next
Mavoungou, J.P., Nkuimi-Jugnia, C. (2006)
International Journal of Mathematics and Mathematical Sciences
Tomáš Kepka (1981)
Acta Universitatis Carolinae. Mathematica et Physica
Tomáš Kepka (1981)
Acta Universitatis Carolinae. Mathematica et Physica
Vítězslav Novák (1985)
Czechoslovak Mathematical Journal
V. R. Chandran (1987)
Czechoslovak Mathematical Journal
V. R. Chandran (1987)
Czechoslovak Mathematical Journal
Sin Min Lee (1980)
Commentationes Mathematicae Universitatis Carolinae
Ramalho, Margarita (1990)
Portugaliae mathematica
Sin-Min Lee (1985)
Publications de l'Institut Mathématique
J. Płonka (1982)
Banach Center Publications
Dietmar Schweigert, Magdalena Szymańska (1987)
Czechoslovak Mathematical Journal
I. Sain (1982)
Banach Center Publications
Danica Jakubíková-Studenovská (1981)
Commentationes Mathematicae Universitatis Carolinae
L.M. Wang (1995)
Semigroup forum
Danica Jakubíková-Studenovská (1982)
Czechoslovak Mathematical Journal
Danica Jakubíková-Studenovská (1983)
Czechoslovak Mathematical Journal
Pavol Zlatoš (1983)
Commentationes Mathematicae Universitatis Carolinae
Boris M. Vernikov (1997)
Commentationes Mathematicae Universitatis Carolinae
We describe -sets whose congruences satisfy some natural lattice or multiplicative restrictions. In particular, we determine -sets with distributive, arguesian, modular, upper or lower semimodular congruence lattice as well as congruence -permutable -sets for .
I. Levi, S. Seif (1991)
Semigroup forum
Konrad Pióro (2000)
Archivum Mathematicum
The aim of the present paper is to translate some algebraic concepts to hypergraphs. Thus we obtain a new language, very useful in the investigation of subalgebra lattices of partial, and also total, algebras. In this paper we solve three such problems on subalgebra lattices, other will be solved in [[Pio4]]. First, we show that for two arbitrary partial algebras, if their directed hypergraphs are isomorphic, then their weak, relative and strong subalgebra lattices are isomorphic. Secondly, we prove...
Page 1 Next