Duality for Cardinal Algebras.
A construction of all homomorphisms of a heterogeneous algebra into an algebra of the same type is presented. A relational structure is assigned to any heterogeneous algebra, and homomorphisms between these relational structures make it possible to construct homomorphisms between heterogeneous algebras. Homomorphisms of relational structures can be constructed using homomorphisms of algebras that are described in [11].
In [2] the theory of hyperidentities and solid varieties was extended to algebraic systems and solid model classes of algebraic systems. The disadvantage of this approach is that it needs the concept of a formula system. In this paper we present a different approach which is based on the concept of a relational clone. The main result is a characterization of solid model classes of algebraic systems. The results will be applied to study the properties of the monoid of all hypersubstitutions of an...
We find the basis of all linear identities which are true in the variety of entropic graph algebras. We apply it to describe the lattice of all subvarieties of power entropic graph algebras.