Factorable congruences and factorable congruence blocks on powers of a finite algebra
We give several characterisations of strongly projective graphs which generalise in many respects odd cycles and complete graphs [7]. We prove that all known families of projective graphs contain only strongly projective graphs, including complete graphs, odd cycles, Kneser graphs and non-bipartite distance-transitive graphs of diameter d ≥ 3.
Given an n-ary k-valued function f, gap(f) denotes the essential arity gap of f which is the minimal number of essential variables in f which become fictive when identifying any two distinct essential variables in f. In the present paper we study the properties of the symmetric function with non-trivial arity gap (2 ≤ gap(f)). We prove several results concerning decomposition of the symmetric functions with non-trivial arity gap with its minors or subfunctions. We show that all non-empty sets of...
A concrete category is (algebraically) universal if any category of algebras has a full embedding into , and is almost universal if there is a class of -objects such that all non-constant homomorphisms between them form a universal category. The main result of this paper fully characterizes the finitely generated varieties of -lattices which are almost universal.
We propose the notion of flocks, which formerly were introduced only in based algebras, for any universal algebra. This generalization keeps the main properties we know from vector spaces, e.g. a closure system that extends the subalgebra one. It comes from the idempotent elementary functions, we call "interpolators", that in case of vector spaces merely are linear functions with normalized coefficients. The main example, we consider outside vector spaces, concerns Boolean algebras,...
This paper deals with some properties of n-fold commutative ideals and n-fold weak commutative ideals in BCK-algebras. Afterwards, we construct some algorithms for studying foldness theory of commutative ideals in BCK-algebras.