Page 1 Next

Displaying 1 – 20 of 150

Showing per page

A classification of rational languages by semilattice-ordered monoids

Libor Polák (2004)

Archivum Mathematicum

We prove here an Eilenberg type theorem: the so-called conjunctive varieties of rational languages correspond to the pseudovarieties of finite semilattice-ordered monoids. Taking complements of members of a conjunctive variety of languages we get a so-called disjunctive variety. We present here a non-trivial example of such a variety together with an equational characterization of the corresponding pseudovariety.

A clone-theoretic formulation of the Erdos-Faber-Lovász conjecture

Lucien Haddad, Claude Tardif (2004)

Discussiones Mathematicae Graph Theory

The Erdős-Faber-Lovász conjecture states that if a graph G is the union of n cliques of size n no two of which share more than one vertex, then χ(G) = n. We provide a formulation of this conjecture in terms of maximal partial clones of partial operations on a set.

Currently displaying 1 – 20 of 150

Page 1 Next