Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties
The concept of relative pseudocomplement is introduced in a commutative directoid. It is shown that the operation of relative pseudocomplementation can be characterized by identities and hence the class of these algebras forms a variety. This variety is congruence weakly regular and congruence distributive. A description of congruences via their kernels is presented and the kernels are characterized as the so-called -ideals.
We introduce a weakened form of regularity, the so called semiregularity, and we show that if every diagonal subalgebra of is semiregular then is congruence modular at 0.
In the present paper we consider algebras satisfying both the congruence extension property (briefly the CEP) and the weak congruence intersection property (WCIP for short). We prove that subalgebras of such algebras have these properties. We deduce that a lattice has the CEP and the WCIP if and only if it is a two-element chain. We also show that the class of all congruence modular algebras with the WCIP is closed under the formation of homomorphic images.
We define and compare a selection of congruence properties of quasivarieties, including the relative congruence meet semi-distributivity, RSD(∧), and the weak extension property, WEP. We prove that if 𝒦 ⊆ ℒ ⊆ ℒ' are quasivarieties of finite signature, and ℒ' is finitely generated while 𝒦 ⊨ WEP, then 𝒦 is finitely axiomatizable relative to ℒ. We prove for any quasivariety 𝒦 that 𝒦 ⊨ RSD(∧) iff 𝒦 has pseudo-complemented congruence lattices and 𝒦 ⊨ WEP. Applying these results and other results...