Displaying 181 – 200 of 1815

Showing per page

An improvement of Euclid's algorithm

Zítko, Jan, Kuřátko, Jan (2010)

Programs and Algorithms of Numerical Mathematics

The paper introduces the calculation of a greatest common divisor of two univariate polynomials. Euclid’s algorithm can be easily simulated by the reduction of the Sylvester matrix to an upper triangular form. This is performed by using c - s transformation and Q R -factorization methods. Both procedures are described and numerically compared. Computations are performed in the floating point environment.

Aposyndesis in

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2023)

Commentationes Mathematicae Universitatis Carolinae

We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions P ( a , b ) with the property that every prime number that divides a also divides b , it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are aposyndetic...

Approximate polynomial GCD

Eliaš, Ján, Zítko, Jan (2013)

Programs and Algorithms of Numerical Mathematics

The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications, for example, in image processing and control theory. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldest and commonly used Euclid’s algorithm. However, this is an ill-posed problem, particularly when some unknown noise is applied to the polynomial coefficients. Hence, new methods for the GCD computation...

Currently displaying 181 – 200 of 1815