Ideals in the semiring N
Introduction. In this note we use the following standard notations: π(x) is the number of primes not exceeding x, while . The best known inequalities involving the function π(x) are the ones obtained in [6] by B. Rosser and L. Schoenfeld: (1) x/(log x - 1/2) < π(x) for x ≥ 67 (2) x/(log x - 3/2) > π(x) for . The proof of the above inequalities is not elementary and is based on the first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4]. Then Rosser, Yohe and Schoenfeld...
Let where denotes the number of positive divisors of the natural number . We present monotonicity properties of functions defined in terms of . More specifically, we prove that is strictly increasing on , while is strictly decreasing on . These results are then applied to obtain various inequalities, one of which states that the double inequality holds with the best possible constant factors and . Here, denotes Euler’s constant. This refines a result of Salem, who proved the inequalities...
For positive integers , Euler’s phi function and Dedekind’s psi function are given by respectively. We prove that for all we have and The sign of equality holds if and only if is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).
For any positive integer let ϕ(n) be the Euler function of n. A positive integer is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression consists entirely of noncototients. We then use computations to detect seven such positive integers k.