Page 1 Next

Displaying 1 – 20 of 38

Showing per page

Inequalities concerning the function π(x): Applications

Laurenţiu Panaitopol (2000)

Acta Arithmetica

Introduction. In this note we use the following standard notations: π(x) is the number of primes not exceeding x, while θ ( x ) = p x l o g p . The best known inequalities involving the function π(x) are the ones obtained in [6] by B. Rosser and L. Schoenfeld: (1) x/(log x - 1/2) < π(x) for x ≥ 67 (2) x/(log x - 3/2) > π(x) for x > e 3 / 2 . The proof of the above inequalities is not elementary and is based on the first 25 000 zeros of the Riemann function ξ(s) obtained by D. H. Lehmer [4]. Then Rosser, Yohe and Schoenfeld...

Inequalities for Taylor series involving the divisor function

Horst Alzer, Man Kam Kwong (2022)

Czechoslovak Mathematical Journal

Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities...

Inequalities for the arithmetical functions of Euler and Dedekind

Horst Alzer, Man Kam Kwong (2020)

Czechoslovak Mathematical Journal

For positive integers n , Euler’s phi function and Dedekind’s psi function are given by φ ( n ) = n p n p prime 1 - 1 p and ψ ( n ) = n p n p prime 1 + 1 p , respectively. We prove that for all n 2 we have 1 - 1 n n - 1 1 + 1 n n + 1 φ ( n ) n φ ( n ) ψ ( n ) n ψ ( n ) and φ ( n ) n ψ ( n ) ψ ( n ) n φ ( n ) 1 - 1 n n + 1 1 + 1 n n - 1 . The sign of equality holds if and only if n is a prime. The first inequality refines results due to Atanassov (2011) and Kannan & Srikanth (2013).

Infinite families of noncototients

A. Flammenkamp, F. Luca (2000)

Colloquium Mathematicae

For any positive integer n let ϕ(n) be the Euler function of n. A positive integer n is called a noncototient if the equation x-ϕ(x)=n has no solution x. In this note, we give a sufficient condition on a positive integer k such that the geometrical progression ( 2 m k ) m 1 consists entirely of noncototients. We then use computations to detect seven such positive integers k.

Currently displaying 1 – 20 of 38

Page 1 Next