Displaying 181 – 200 of 236

Showing per page

Aposyndesis in

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2023)

Commentationes Mathematicae Universitatis Carolinae

We consider the Golomb and the Kirch topologies in the set of natural numbers. Among other results, we show that while with the Kirch topology every arithmetic progression is aposyndetic, in the Golomb topology only for those arithmetic progressions P ( a , b ) with the property that every prime number that divides a also divides b , it follows that being connected, being Brown, being totally Brown, and being aposyndetic are all equivalent. This characterizes the arithmetic progressions which are aposyndetic...

Approximate polynomial GCD

Eliaš, Ján, Zítko, Jan (2013)

Programs and Algorithms of Numerical Mathematics

The computation of polynomial greatest common divisor (GCD) ranks among basic algebraic problems with many applications, for example, in image processing and control theory. The problem of the GCD computing of two exact polynomials is well defined and can be solved symbolically, for example, by the oldest and commonly used Euclid’s algorithm. However, this is an ill-posed problem, particularly when some unknown noise is applied to the polynomial coefficients. Hence, new methods for the GCD computation...

Approximation properties of β-expansions

Simon Baker (2015)

Acta Arithmetica

Let β ∈ (1,2) and x ∈ [0,1/(β-1)]. We call a sequence ( ϵ i ) i = 1 0 , 1 a β-expansion for x if x = i = 1 ϵ i β - i . We call a finite sequence ( ϵ i ) i = 1 n 0 , 1 n an n-prefix for x if it can be extended to form a β-expansion of x. In this paper we study how good an approximation is provided by the set of n-prefixes. Given Ψ : 0 , we introduce the following subset of ℝ: W β ( Ψ ) : = m = 1 n = m ( ϵ i ) i = 1 n 0 , 1 n [ i = 1 n ( ϵ i ) / ( β i ) , i = 1 n ( ϵ i ) / ( β i ) + Ψ ( n ) ] In other words, W β ( Ψ ) is the set of x ∈ ℝ for which there exist infinitely many solutions to the inequalities 0 x - i = 1 n ( ϵ i ) / ( β i ) Ψ ( n ) . When n = 1 2 n Ψ ( n ) < , the Borel-Cantelli lemma tells us that the Lebesgue measure of W β ( Ψ ) is...

Currently displaying 181 – 200 of 236