Primes, permutations and primitive roots.
Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U(P,Q) such that the rank of appearance of N in U(P,Q) is exactly (N-ε(N))/d, where the signature ε(N) = (D/N) is given by the Jacobi symbol with respect to the discriminant D of U. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if (N-ε(N))/d is the maximal rank of N among Lucas sequences U(P,Q) that exhibit N as a Lucas pseudoprime. We derive...
For positive integers m, U and V, we obtain an asymptotic formula for the number of integer points (u,v) ∈ [1,U] × [1,V] which belong to the modular hyperbola uv ≡ 1 (mod m) and also have gcd(u,v) =1, which are also known as primitive points. Such points have a nice geometric interpretation as points on the modular hyperbola which are "visible" from the origin.