Netted matrices.
Let , and be fixed complex numbers. Let be the Toeplitz matrix all of whose entries above the diagonal are , all of whose entries below the diagonal are , and all of whose entries on the diagonal are . For , each principal minor of has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of . We also show that all complex polynomials in are Toeplitz matrices. In particular, the inverse of is a Toeplitz matrix when...
In this paper, we study the properties of the sequence of polynomials given by , for , where is non-constant and the characteristic of is . This complements some results from R. Euler, L.H. Gallardo: On explicit formulae and linear recurrent sequences, Acta Math. Univ. Comenianae, 80 (2011) 213-219.
The Pell sequence is the second order linear recurrence defined by with initial conditions and . In this paper, we investigate a generalization of the Pell sequence called the -generalized Pell sequence which is generated by a recurrence relation of a higher order. We present recurrence relations, the generalized Binet formula and different arithmetic properties for the above family of sequences. Some interesting identities involving the Fibonacci and generalized Pell numbers are also deduced....